Special bracket versus Jacobi bracket on the classical phase space of general relativistic test particle

2014 ◽  
Vol 11 (07) ◽  
pp. 1460020 ◽  
Author(s):  
Josef Janyška

The classical phase space of general relativistic classical test particle (here called, for short, "phase space") is defined as the first jet space of motions regarded as timelike one-dimensional submanifolds of spacetime. By the projectability assumption, we define the subsheaf of special phase functions with a special Lie bracket and we compare the Lie algebra of special phase functions with the structures obtained on the phase space by the standard Hamiltonian approach.

2015 ◽  
Vol 12 (08) ◽  
pp. 1560020 ◽  
Author(s):  
Josef Janyška

The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric and an electromagnetic field define the joined almost-cosymplectic-contact structure on the odd-dimensional phase space. In this paper, we study infinitesimal symmetries (ISs) of this phase structure. We prove that there are no hidden ISs.


2008 ◽  
Vol 05 (05) ◽  
pp. 699-754 ◽  
Author(s):  
JOSEF JANYŠKA ◽  
MARCO MODUGNO

This paper is concerned with basic geometric properties of the phase space of a classical general relativistic particle, regarded as the 1st jet space of motions, i.e. as the 1st jet space of timelike 1-dimensional submanifolds of spacetime. This setting allows us to skip constraints. Our main goal is to determine the geometric conditions by which the Lorentz metric and a connection of the phase space yield contact and Jacobi structures. In particular, we specialize these conditions to the cases when the connection of the phase space is generated by the metric and an additional tensor. Indeed, the case generated by the metric and the electromagnetic field is included, as well.


1996 ◽  
Vol 10 (11) ◽  
pp. 1285-1291
Author(s):  
L. BUONANNO ◽  
M. RENNA ◽  
I.P. PAVLOTSKY

The so-called no-interaction theorem of D.G. Currie, T.F. Jordan, E.C. Sudarshan, H. Leutwyler, G. Marmo and N. Mukunda makes it possible to construct relativistic quasi-classical particle dynamics in the post-Galilean approximation only.1−4 In this approximation the Lagrangians are singular on some surfaces of the phase space. The dynamical properties are essentially peculiar on the singular surfaces.5−8 In the particular case of the rectilinear motion of two electrons the peculiar point appears when the distance between the particles r=r0, where r0=e2/mc2 (the so-called “radius of an electron”). Here m and e are respectively the mass and the charge of the electron, c is the speed of light. In this paper it is shown that in the simple case of a one-dimensional system of two electrons with the symmetrical initial condition v1=−v2 (v1 and v2 are the velocities of the particles), the density of probability tends to zero when the distance between electrons tends to r0. In other words, the point of the classical phase-space, which cannot be crossed by the trajectory of the system, reflects at the point where the corresponding quantum system has the vanishing probability.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


1985 ◽  
Vol 40 (10) ◽  
pp. 959-967
Author(s):  
A. Salat

The equivalence of magnetic field line equations to a one-dimensional time-dependent Hamiltonian system is used to construct magnetic fields with arbitrary toroidal magnetic surfaces I = const. For this purpose Hamiltonians H which together with their invariants satisfy periodicity constraints have to be known. The choice of H fixes the rotational transform η(I). Arbitrary axisymmetric fields, and nonaxisymmetric fields with constant η(I) are considered in detail.Configurations with coinciding magnetic and current density surfaces are obtained. The approach used is not well suited, however, to satisfying the additional MHD equilibrium condition of constant pressure on magnetic surfaces.


2001 ◽  
Vol 64 (5) ◽  
Author(s):  
Yosef Ashkenazy ◽  
Luca Bonci ◽  
Jacob Levitan ◽  
Roberto Roncaglia

1994 ◽  
Vol 50 (5) ◽  
pp. 4293-4297 ◽  
Author(s):  
P. Domokos ◽  
P. Adam ◽  
J. Janszky

Sign in / Sign up

Export Citation Format

Share Document