scholarly journals Black ring and Kerr ellipsoid — Solitonic configurations in modified Finsler gravity

2015 ◽  
Vol 12 (10) ◽  
pp. 1550102 ◽  
Author(s):  
Subhash Rajpoot ◽  
Sergiu I. Vacaru

We study an effective Einstein–Finsler theory on tangent Lorentz bundle constructed as a "minimal" extension of general relativity. Black ring and Kerr-like ellipsoid exact solutions and solitonic configurations are presented. In this endeavor the relevant metric depends not only on four-dimensional spacetime coordinates and also on velocity type variables that can be interpreted as additional coordinates in the space of "extra dimensions".

2015 ◽  
Vol 24 (07) ◽  
pp. 1550053 ◽  
Author(s):  
Amare Abebe

One of the exact solutions of f(R) theories of gravity in the presence of different forms of matter exactly mimics the ΛCDM solution of general relativity (GR) at the background level. In this work we study the evolution of scalar cosmological perturbations in the covariant and gauge-invariant formalism and show that although the background in such a model is indistinguishable from the standard ΛCDM cosmology, this degeneracy is broken at the level of first-order perturbations. This is done by predicting different rates of structure formation in ΛCDM and the f(R) model both in the complete and quasi-static regimes.


2005 ◽  
Vol 14 (12) ◽  
pp. 2347-2353 ◽  
Author(s):  
CHRIS CLARKSON ◽  
ROY MAARTENS

If string theory is correct, then our observable universe may be a three-dimensional "brane" embedded in a higher-dimensional spacetime. This theoretical scenario should be tested via the state-of-the-art in gravitational experiments — the current and upcoming gravity-wave detectors. Indeed, the existence of extra dimensions leads to oscillations that leave a spectroscopic signature in the gravity-wave signal from black holes. The detectors that have been designed to confirm Einstein's prediction of gravity waves, can in principle also provide tests and constraints on string theory.


2021 ◽  
Author(s):  
Samuel Yuguru

Abstract Physics in general is successfully governed by quantum mechanics at the microscale and principles of relativity at the macroscale. Any attempts to unify them using conventional methods have somewhat remained elusive for nearly a century up to the present stage. Here in this study, a classical gedanken experiment of electron-wave diffraction of a single slit is intuitively examined for its quantized states. A unidirectional monopole field as quanta of the electric field is pictorially conceptualized into 4D space-time. Its application towards quantum mechanics and general relativity in accordance with existing knowledge in physics paves an alternative path towards their reconciliation process. This assumes a multiverse at a hierarchy of scales with gravity localized to a body into space. Principles of special relativity are then sustained along inertia frames of extra dimensions within the proposed model. Such descriptions provide an approximate intuitive tool to examine physics in general from alternative perspectives using conventional methods and this warrants further investigations.


2012 ◽  
Vol 56 (1) ◽  
pp. 139-144
Author(s):  
Dumitru N. Vulcanov ◽  
Remus-Ştefan Ş. Boată

AbstractThe article presents some new aspects and experience on the use of computer in teaching general relativity and cosmology for undergraduate students (and not only) with some experience in computer manipulation. Some years ago certain results were reported [1] using old fashioned computer algebra platforms but the growing popularity of graphical platforms as Maple and Mathematica forced us to adapt and reconsider our methods and programs. We will describe some simple algebraic programming procedures (in Maple with GrTensorII package) for obtaining and the study of some exact solutions of the Einstein equations in order to convince a dedicated student in general relativity about the utility of a computer algebra system.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
M. A. Ahmed

In recent years, theories in which the Einstein-Hilbert Lagrangian is replaced by a function f(R) of the Ricci Scalar have been extensively studied in four-dimensional spacetime. In this paper we carry out an analysis of such theories in two-dimensional spacetime with focus on cosmological implications. Solutions to the cosmological field equations are obtained and their properties are analysed. Inflationary solutions are also obtained and discussed. Quantization is then carried out, the Wheeler-DeWitt equation is set up, and its exact solutions are obtained.


1984 ◽  
Vol 62 (3) ◽  
pp. 239-246 ◽  
Author(s):  
K. D. Krori ◽  
P. Borgohain ◽  
Ranjumani Devi

Some exact solutions for anisotropic matter are worked out in the framework of general relativity. Four such solutions are obtained by a suitable modification of four well-known solutions by Tolman, viz., Tolman's solutions III, IV, V, and VI. The degree of anisotropy is determined by a parameter, and the range of values this parameter will have under realistic situations is calculated for all four classes. A singularity-free new solution for anisotropic matter is also presented.


Sign in / Sign up

Export Citation Format

Share Document