scholarly journals GRAVITY-WAVE DETECTORS AS PROBES OF EXTRA DIMENSIONS

2005 ◽  
Vol 14 (12) ◽  
pp. 2347-2353 ◽  
Author(s):  
CHRIS CLARKSON ◽  
ROY MAARTENS

If string theory is correct, then our observable universe may be a three-dimensional "brane" embedded in a higher-dimensional spacetime. This theoretical scenario should be tested via the state-of-the-art in gravitational experiments — the current and upcoming gravity-wave detectors. Indeed, the existence of extra dimensions leads to oscillations that leave a spectroscopic signature in the gravity-wave signal from black holes. The detectors that have been designed to confirm Einstein's prediction of gravity waves, can in principle also provide tests and constraints on string theory.

2007 ◽  
Vol 25 (9) ◽  
pp. 1979-1986 ◽  
Author(s):  
L. Sun ◽  
W. Wan ◽  
F. Ding ◽  
T. Mao

Abstract. In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1) The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2) Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3) The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3571-3576 ◽  
Author(s):  
SUPRIYA KAR

Inspired by the space-time noncommutativity on a D5-brane world, in a type IIB string theory, we explore the possibility of an emergent 4D ordinary space-time in the formalism. In particular, a curved D3-brane dynamics is worked out to obtain an axially symmetric and a spherically symmetric AdS and dS black holes. Extremal geometries are analyzed, using the noncommutative scaling. The emerging two dimensional semi-classical black holes are investigated to yield evidence for extra dimensions in the curved brane-world. Interestingly, a tunneling between dS to AdS vacua in the formalism is briefly discussed by incorporating the Hagedorn transitions in string theory.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950160
Author(s):  
M. B. Tataryn ◽  
M. M. Stetsko

Static black hole with the Power Maxwell invariant (PMI), Born–Infeld (BI), logarithmic (LN), exponential (EN) electromagnetic fields in three-dimensional spacetime with cosmological constant was studied. It was shown that the LN and EN fields represent the Born–Infeld type of nonlinear electrodynamics. It the framework of General Relativity the exact solutions of the field equations were obtained, corresponding thermodynamic functions were calculated and the [Formula: see text] criticality of the black holes in the extended phase-space thermodynamics was investigated.


2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950049 ◽  
Author(s):  
Kai Lin ◽  
Fei-Hung Ho ◽  
Wei-Liang Qian

In this work, we investigate the [Formula: see text]-dimensional charged static black hole solutions in the Einstein-æther theory. By taking the metric parameter [Formula: see text] to be [Formula: see text], and [Formula: see text], we obtain the spherical, planar, and hyperbolic spacetimes, respectively. Three choices of the cosmological constant, [Formula: see text], [Formula: see text] and [Formula: see text], are investigated, which correspond to asymptotically de Sitter, flat and anti-de Sitter spacetimes. The obtained results show the existence of the universal horizon in higher dimensional cases which may trap any particle with arbitrarily large velocity. We analyze the horizon and the surface gravity of four- and five-dimensional black holes, and the relations between the above quantities and the electrical charge. It is shown that when the aether coefficient [Formula: see text] or the charge [Formula: see text] increases, the outer Killing horizon shrinks and approaches the universal horizon. Furthermore, the surface gravity decreases and approaches zero in the limit [Formula: see text] or [Formula: see text], where [Formula: see text] is the extreme charge. The main features of the horizon and surface gravity are found to be similar to those in [Formula: see text] case, but subtle differences are also observed.


2017 ◽  
Vol 74 (11) ◽  
pp. 3551-3566 ◽  
Author(s):  
Jacob P. Edman ◽  
David M. Romps

Abstract The baroclinic-mode decomposition is a fixture of the tropical-dynamics literature because of its simplicity and apparent usefulness in understanding a wide range of atmospheric phenomena. However, its derivation relies on the assumption that the tropopause is a rigid lid that artificially restricts the vertical propagation of wave energy. This causes tropospheric buoyancy anomalies of a single vertical mode to remain coherent for all time in the absence of dissipation. Here, the authors derive the Green’s functions for these baroclinic modes in a two-dimensional troposphere (or, equivalently, a three-dimensional troposphere with one translational symmetry) that is overlain by a stratosphere. These Green’s functions quantify the propagation and spreading of gravity waves generated by a horizontally localized heating, and they can be used to reconstruct the evolution of any tropospheric heating. For a first-baroclinic two-dimensional right-moving or left-moving gravity wave with a characteristic width of 100 km, its initial horizontal shape becomes unrecognizable after 4 h, at which point its initial amplitude has also been reduced by a factor of 1/π. After this time, the gravity wave assumes a universal shape that widens linearly in time. For gravity waves on a periodic domain the length of Earth’s circumference, it takes only 10 days for the gravity waves to spread their buoyancy throughout the entire domain.


2002 ◽  
Vol 11 (02) ◽  
pp. 237-244 ◽  
Author(s):  
S. G. GHOSH ◽  
R. V. SARAYKAR

We analyze here the spherically symmetric collapse of a charged null fluid in a higher dimensional spacetime. Both naked singularities and black holes are shown to be developing as final outcome of the collapse. A relationship between weak energy condition and occurrence of strong curvature singularity is pointed out.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242015 ◽  
Author(s):  
ROLF SCHIMMRIGK

Over the past few years the arithmetic Langlands program has proven useful in addressing physical problems. In this paper it is shown how Langlands' reciprocity conjecture for automorphic forms, in combination with a representation theoretic notion of motives, suggests a framework in which the entropy of automorphic black holes can be viewed as a probe of spacetime that is sensitive to the geometry of the extra dimensions predicted by string theory. If it were possible to produce black holes with automorphic entropy in the laboratory their evaporation would provide us with information about the precise shape of the compact geometry.


Sign in / Sign up

Export Citation Format

Share Document