scholarly journals Shear-free conditions of a Chaplygin-gas-dominated universe

Author(s):  
Amare Abebe ◽  
Mudhahir Al Ajmi ◽  
Maye Elmardi ◽  
Hemwati Nandan ◽  
Noor ul Sabah

In this work, we revisit the shear-free conjecture of general relativity and study the well-known shear-free condition in the context of the Chaplygin-gas cosmology. It had been shown in previous investigations that, in the general relativistic framework, the matter congruences of shear-free perfect fluid spacetimes should be either expansion-free or rotation-free. Our current investigation, however, indicates that a universe dominated by a Chaplygin-gas can allow a simultaneous expansion and rotation of the fluid provided that certain non-trivial conditions, which we derive and describe in what follows, are met. We also show that, in the appropriate limiting cases, our results reduce to the expected results of dust spacetimes which can only expand or rotate, but not both, at the same time.

2004 ◽  
Vol 17 (1-2) ◽  
pp. 165-197 ◽  
Author(s):  
Erhard Scholz

Hermann Weyl (1885–1955) was one of the early contributors to the mathematics of general relativity. This article argues that in 1929, for the formulation of a general relativistic framework of the Dirac equation, he both abolished and preserved in modified form the conceptual perspective that he had developed earlier in his “analysis of the problem of space.” The ideas of infinitesimal congruence from the early 1920s were aufgehoben (in all senses of the German word) in the general relativistic framework for the Dirac equation. He preserved the central idea of gauge as a “purely infinitesimal” aspect of (internal) symmetries in a group extension schema. With respect to methodology, however, Weyl gave up his earlier preferences for relatively a-priori arguments and tried to incorporate as much empiricism as he could. This signified a clearly expressed empirical turn for him. Moreover, in this step he emphasized that the mathematical objects used for the representation of matter structures stood at the center of the construction, rather than interaction fields which, in the early 1920s, he had considered as more or less derivable from geometrico-philosophical considerations.


Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


2021 ◽  
Vol 62 (3) ◽  
pp. 032501
Author(s):  
U. C. De ◽  
S. K. Chaubey ◽  
S. Shenawy

Synthese ◽  
2021 ◽  
Author(s):  
Antonio Vassallo

AbstractThe dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein’s equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities—qua part of a physical law—highlight some kind of a posteriori necessity in a Kripkean sense. The inquiry shows that general relativistic physics has an interesting bearing on the debate about the metaphysics of the laws of nature.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850169
Author(s):  
J. H. Field

Previous special relativistic calculations of gravitational redshift, light deflection and Shapiro delay are extended to include perigee advance. The three classical, order G, post-Newtonian predictions of general relativity as well as general relativistic light-speed-variation are therefore shown to be also consequences of special relativistic Newtonian mechanics in Euclidean space. The calculations are compared to general relativistic ones based on the Schwarzschild metric equation, and related literature is critically reviewed.


1998 ◽  
Vol 13 (16) ◽  
pp. 1253-1264 ◽  
Author(s):  
LUIS P. NEIRA CERVILLERA ◽  
ROBERTO O. AQUILANO ◽  
HECTOR VUCETICH

In this letter we present a general relativistic star with strange matter to explain in a young supernova remnant the radial millisecond oscillations. The results confirm previous conclusions.


1995 ◽  
Vol 10 ◽  
pp. 201-201
Author(s):  
N. Capitaine ◽  
B. Guinot

In 1991, IAU Resolution A4 introduced General Relativity as the theoretical background for defining celestial space-time reference sytems. It is now essential that units and constants used in dynamical astronomy be defined in the same framework, at least in a manner which is compatible with the minimum degree of approximation of the metrics given in Resolution A4.This resolution states that astronomical constants and quantities should be expressed in SI units, but does not consider the use of astronomical units. We should first evaluate the usefulness of maintaining the system of astronomical units. If this system is kept, it must be defined in the spirit of Resolution A4. According to Huang T.-Y., Han C.-H., Yi Z.-H., Xu B.-X. (What is the astronomical unit of length?, to be published in Asttron. Astrophys.), the astronomical units for time and length are units for proper quantities and are therefore proper quantities. We fully concur with this point of view. Astronomical units are used to establish the system of graduation of coordinates which appear in ephemerides: the graduation units are not, properly speaking astronomical units. Astronomical constants, expressed in SI or astronomical units, are also proper quantities.


Sign in / Sign up

Export Citation Format

Share Document