On Some n-C2 and Strongly C2 Extensions

2020 ◽  
Vol 27 (03) ◽  
pp. 545-562
Author(s):  
Farid Kourki ◽  
Jianlong Chen ◽  
Wenxi Li

Let R be a ring and n be a positive integer. Then R is called a left n-C2-ring (strongly left C2-ring) if every n-generated (finitely generated) proper right ideal of R has nonzero left annihilator. We discuss some n-C2 and strongly C2 extensions, such as trivial extensions, formal triangular matrix rings, group rings and [Formula: see text][D, C].

2015 ◽  
Vol 22 (spec01) ◽  
pp. 947-968 ◽  
Author(s):  
A. Majidinya ◽  
A. Moussavi ◽  
K. Paykan

A ring R is a left AIP-ring if the left annihilator of any ideal of R is pure as a left ideal. Equivalently, R is a left AIP-ring if R modulo the left annihilator of any ideal is flat. This class of rings includes both right PP-rings and right p.q.-Baer rings (and hence the biregular rings) and is closed under direct products and forming upper triangular matrix rings. It is shown that, unlike the Baer or right PP conditions, the AIP property is inherited by polynomial extensions and has the advantage that it is a Morita invariant property. We also give a complete characterization of a class of AIP-rings which have a sheaf representation. Connections to related classes of rings are investigated and several examples and counterexamples are included to illustrate and delimit the theory.


2020 ◽  
pp. 1-8
Author(s):  
GUOLI XIA ◽  
YIQIANG ZHOU

Abstract An element a in a ring R is left annihilator-stable (or left AS) if, whenever $Ra+{\rm l}(b)=R$ with $b\in R$ , $a-u\in {\rm l}(b)$ for a unit u in R, and the ring R is a left AS ring if each of its elements is left AS. In this paper, we show that the left AS elements in a ring form a multiplicatively closed set, giving an affirmative answer to a question of Nicholson [J. Pure Appl. Alg.221 (2017), 2557–2572.]. This result is used to obtain a necessary and sufficient condition for a formal triangular matrix ring to be left AS. As an application, we provide examples of left AS rings R over which the triangular matrix rings ${\mathbb T}_n(R)$ are not left AS for all $n\ge 2$ . These examples give a negative answer to another question of Nicholson [J. Pure Appl. Alg.221 (2017), 2557–2572.] whether R/J(R) being left AS implies that R is left AS.


1994 ◽  
Vol 46 (5) ◽  
pp. 971-981 ◽  
Author(s):  
S. K. Jain ◽  
S. R. López-Permouth ◽  
K. Oshiro ◽  
M. A. Saleh

AbstractA module M is said to be weakly N-projective if it has a projective cover π: P(M) ↠M and for each homomorphism : P(M) → N there exists an epimorphism σ:P(M) ↠M such that (kerσ) = 0, equivalently there exists a homomorphism :M ↠N such that σ= . A module M is said to be weakly projective if it is weakly N-projective for all finitely generated modules N. Weakly N-injective and weakly injective modules are defined dually. In this paper we study rings over which every weakly injective right R-module is weakly projective. We also study those rings over which every weakly projective right module is weakly injective. Among other results, we show that for a ring R the following conditions are equivalent:(1) R is a left perfect and every weakly projective right R-module is weakly injective.(2) R is a direct sum of matrix rings over local QF-rings.(3) R is a QF-ring such that for any indecomposable projective right module eR and for any right ideal I, soc(eR/eI) = (eR/eJ)n for some positive integer n.(4) R is right artinian ring and every weakly injective right R-module is weakly projective.(5) Every weakly projective right R-module is weakly injective and every weakly injective right R-module is weakly projective.


2020 ◽  
Vol 18 (1) ◽  
pp. 182-193
Author(s):  
He Yuan ◽  
Liangyun Chen

Abstract Let R be a subset of a unital ring Q such that 0 ∈ R. Let us fix an element t ∈ Q. If R is a (t; d)-free subset of Q, then Tn(R) is a (t′; d)-free subset of Tn(Q), where t′ ∈ Tn(Q), $\begin{array}{} t_{ll}' \end{array} $ = t, l = 1, 2, …, n, for any n ∈ N.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950021
Author(s):  
Tugce Pekacar Calci ◽  
Huanyin Chen

In this paper, we introduce a new notion which lies properly between strong [Formula: see text]-regularity and pseudopolarity. A ring [Formula: see text] is feckly polar if for any [Formula: see text] there exists [Formula: see text] such that [Formula: see text] Many structure theorems are proved. Further, we investigate feck polarity for triangular matrix and matrix rings. The relations among strongly [Formula: see text]-regular rings, pseudopolar rings and feckly polar rings are also obtained.


1974 ◽  
Vol 26 (6) ◽  
pp. 1380-1383 ◽  
Author(s):  
Thomas S. Shores ◽  
Roger Wiegand

Recall that a ring R (all rings considered are commutative with unit) is an elementary divisor ring (respectively, a Hermite ring) provided every matrix over R is equivalent to a diagonal matrix (respectively, a triangular matrix). Thus, every elementary divisor ring is Hermite, and it is easily seen that a Hermite ring is Bezout, that is, finitely generated ideals are principal. Examples have been given [4] to show that neither implication is reversible.


1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


Sign in / Sign up

Export Citation Format

Share Document