Synthesis, crystal structures and spectroscopic characterization of Co(II) bis(4,4′-bipyridine) with meso-porphyrins α,β,α,β-tetrakis(o-pivalamidophenyl) porphyrin (α,β,α,β-TpivPP) and tetraphenylporphyrin (TPP)

2013 ◽  
Vol 17 (11) ◽  
pp. 1094-1103 ◽  
Author(s):  
Anissa Mansour ◽  
Yassin Belghith ◽  
Mohamed Salah Belkhiria ◽  
Anna Bujacz ◽  
Vincent Guérineau ◽  
...  

The reaction of the starting materials [ Co II ( Porph )] (Porph = α,α,α,α-tetrakis(o-pivalamidophenyl)porphyrin (TpivPP) and the meso-tetraphenylporphyrin (TPP)) with an excess of 4,4′-bipyridine in chlorobenzene leads to the creation of two cobalt(II) derivatives: [ Co II (α,β,α,β- TpivPP )(4,4′- bpy )2]· C 6 H 5 Cl · C 6 H 14(1) and [ Co II ( TPP )(4,4′- bpy )2]·2 bpy (2). These compounds have been characterized by UV-vis, IR, 1 H NMR and MALDI-TOF spectroscopy. The proton NMR spectra of (1) and (2) clearly indicated that these derivatives are paramagnetic while the UV-vis data confirmed creation of a new six-coordinated or penta-coordinated Co ( II )-meso-porphyrin complexes by displaying red shifted Soret bands. The determined X-ray structures of (1) and (2) show that in the solid state these species are considered as coordination polymers which consist of 1D chains of alternating [ Co II ( Porph )] and 4,4′-bipyridine molecules located at the axial positions of the cobalt(II) coordination sphere. The coordination geometry of Co ( II ) in (1) and (2) is octahedral; the porphyrin (TpivPP or TPP) acts as a tetradentate chelating ligand with four nitrogen atoms from the pyrrole moieties occupying the equatorial positions along the porphyrin core. The N -donor atoms of the 4,4′-bipyridine create the axial ligands. It is noteworthy that for complex (1) the starting porphyrin is the α,α,α,α-TpivPP atropisomer but the final coordination polymer contains the α,β,α,β-TpivPP conformer.

1997 ◽  
Vol 36 (22) ◽  
pp. 4968-4982 ◽  
Author(s):  
Yangzhen Ciringh ◽  
Scott W. Gordon-Wylie ◽  
Richard E. Norman ◽  
George R. Clark ◽  
Susan T. Weintraub ◽  
...  

1984 ◽  
Vol 62 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Sara Ariel ◽  
David Dolphin ◽  
George Domazetis ◽  
Brian R. James ◽  
Tak W. Leung ◽  
...  

The ruthenium(II) porphyrin complex Ru(OEP)(PPh3)2 (OEP = the dianion of octaethylporphyrin) has been prepared from Ru(OEP)(CO)EtOH, and the X-ray crystal structure determined; as expected, the six-coordinate ruthenium is situated in the porphyrin plane and has two axial phosphine ligands. Synthesized also from the carbonyl(ethanol) precursors were the corresponding tris(p-methoxyphenyl)phosphine complex, and the Ru(TPP)L2 (TPP = the dianion of tetraphenylporphyrin, L = PPh3, P(p-CH3OC6H4)3, P″Bu3) and Ru(TPP)(CO)PPh3 complexes. Optical and 1H nmr data are presented for the complexes in solution. In some cases dissociation of a phosphine ligand to generate five-coordinate species occurs and this has been studied quantitatively in toluene at 20 °C for the Ru(OEP)L2 and Ru(TPP)L2 systems.


2002 ◽  
Vol 06 (03) ◽  
pp. 198-202 ◽  
Author(s):  
José L. Sosa-Sánchez ◽  
Alberto Galindo ◽  
Dino Gnecco ◽  
Sylvain Bernès ◽  
George R. Fern ◽  
...  

The synthesis and spectroscopic characterization of a new soluble silicon(IV) phthalocyanine complex is presented. The compound shows an increased solubility compared to its SiPcCl 2 precursor and this allowed solution 1 H NMR characterization. The assignment of the 1 H NMR signals for the axial ligands is greatly facilitated due to the anisotropic high ring current effects from the macrocycle. In addition, good quality crystals were grown from this more soluble material for molecular structure determination by single-crystal X-ray diffraction analysis. The molecular structure determination shows that the complex crystallizes in a non-centrosymmetric space group due to the inherent chirality of the naproxene ligands. Bond lengths and angles fit well to other analogous compounds previously reported.


Author(s):  
ROGER GUILARD ◽  
VIRGINIE PICHON-PESME ◽  
HASSANE LACHEKAR ◽  
CLAUDE LECOMTE ◽  
ALLY M. AUKAULOO ◽  
...  

The synthesis and characterization of three monomeric aluminum porphycenes with anionic or σ-bonded axial ligands is reported. The investigated compounds are represented as ( EtioPc ) Al ( CH 3) and ( EtioPc ) AlX where EtioPc represents the dianion of etioporphycene and X = Cl − or OH −. Each synthesized complex was characterized by mass spectrometry. 1 H NMR, IR and UV-visible spectroscopies as well as by electrochemistry. Comparisons are made between the properties of complexes in the aluminum etioporphycene series and related chloro- or methyl σ-bonded Al ( III ) porphyrins containing octaethylporphyrin ( OEP ) or tetraphenylporphyrin ( TPP ) macrocycles. Comparisons are also made between the currently investigated compounds and a previously reported Al ( III ) μ-oxo dimer, [( EtioPc ) Al ]2 O . In addition, the crystal and molecular structure of ( EtioPc ) Al ( CH 3) was determined by X-ray diffraction. The molecular structure of this methyl-σ-bonded aluminum etioporphycene provides the first structural data for an aluminum porphycene compound. The aluminum(III) atom in ( EtioPc ) Al ( CH 3) is pentacoordinated and is located 0.54 Å from the plane of the four N -nitrogens.


2004 ◽  
Vol 59 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Andreas Sofetis ◽  
Giannis S. Papaefstathiou ◽  
Aris Terzis ◽  
Catherine P. Raptopoulou ◽  
Theodoros F. Zafiropoulos

The reaction of Ga2(SO4)3·18H2O and excess 2,2′:6′,2″-terpyridine (terpy) in MeOH / H2O leads to [Ga(OH)(SO4)(terpy)(H2O)]·H2O (1·H2O] in good yield. The structure of the complex has been determined by single-crystal X-ray crystallography. The GaIII atom in 1·H2O is 6-coordinate and ligation is provided by one terdentate terpy molecule, one monodentate sulfate, one terminal hydroxide and one terminal H2O molecule; the coodination polyhedron about the metal is described as a distorted octahedron. There is an extensive hydrogen-bonding network in the crystal structure which generates corrugated layers parallel to bc. The new complex was characterized by IR and 1H NMR spectroscopy. The spectroscopic data are discussed in terms of the nature of bonding


2009 ◽  
Vol 87 (1) ◽  
pp. 280-287 ◽  
Author(s):  
Yaofeng Chen ◽  
Davit Zargarian

This report describes the synthesis and characterization of the Ni–Me complexes (R-indenyl)Ni(PR′3)Me (R = 1-i-Pr, 1-SiMe3, and 1,3-(SiMe3)2; R′= Me, Ph) and outlines their catalytic reactivities in the dehydrogenative oligomerization of PhSiH3 and its addition to styrene in the absence of initiators/activators. Observation of higher hydrosilylation activities for PPh3-based compounds featuring bulky substituents on the indenyl ligand confirms earlier suggestions that phosphine dissociation is an important component of the catalytic cycle for this reaction. In contrast, oligomerization of PhSiH3 is more facile with PMe3-based precursors and independent of the steric bulk of the indenyl ligand, implying that this reaction does not involve phosphine dissociation. These conclusions are consistent with the variable-temperature 1H NMR spectra of {1,3,-(SiMe3)2-indenyl}Ni(PR′3)Me and various structural parameters observed in the solid-state structures of {1,3,-(SiMe3)2-indenyl}Ni(PPh3)Me, {1,3,-(SiMe3)2-indenyl}Ni(PMe3)Cl, and {1-SiMe3-indenyl}Ni(PMe3)Me.Key words: nickel-indenyl complexes, hydrosilylation, hydrosilane oligomerization.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Gauri D. Bajju ◽  
Deepmala ◽  
Sunil Kumar Anand ◽  
Sujata Kundan ◽  
Narinder Singh

A series of aluminium(III)-p-methyl-meso-tetraphenylporphyrin (p-CH3TPP-Al(III)) containing axially coordinated salicylate anion [p-CH3TPP-Al-X)], where X = salicylate (SA), 4-chlorosalicylate (4-CSA), 5-chlorosalicylate (5-CSA), 5-flourosalicylate (5-FSA), 4-aminosalicylate (4-ASA), 5-aminosalicylate (5-ASA), 5-nitrosalicylate (5-NSA), and 5-sulfosalicylate (5-SSA), have been synthesized and characterized by various spectroscopic techniques including ultraviolet-visible (UV-vis), infrared (IR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy,13C NMR, and elemental analysis. A detailed study of electrochemistry of all the synthesized compounds has been done to compare their oxidation and reduction mechanisms and to explain the effect of axial coordination on their redox properties.


2018 ◽  
Vol 14 ◽  
pp. 1956-1960 ◽  
Author(s):  
Haiyan Guan ◽  
Mingbo Zhou ◽  
Bangshao Yin ◽  
Ling Xu ◽  
Jianxin Song

A π-extended “earring” subporphyrin 3 was synthesized from β,β′-diiodosubporphyrin and diboryltripyrrane via a Suzuki–Miyaura coupling and following oxidation. Its Pd complex 3Pd was also synthesized and both of the compounds were fully characterized by 1H NMR, MS and X-ray single crystal diffraction. The 1H NMR spectra and single crystal structures revealed that aromatic ring current did not extend to the “ear” in both of the two compounds. Their UV–vis/NIR spectra were recorded and the absorption of both compounds is extended to the NIR region and that the absorption of 3Pd is further red-shifted and more intense.


1999 ◽  
Vol 54 (3) ◽  
pp. 349-356 ◽  
Author(s):  
C. Drewes ◽  
W. Preetz

By electrochemical oxidation of (n-Bu4N)[B6H6(CH3)] in the presence of nitrite ions and of the base DBU in dichloromethane solution cis- and trans-[B6H4(CH3)(NO2)]2- , fac- [B6H3(CH3)(NO2)2]2- and mer-[B6H3(CH3)(NO2)c2]2- are formed. X-ray diffraction analyses have been performed on single crystals of cis-(Ph4As)2[B6H4(CH3O)(NO2)] (1) (monoclinic, space group P21/a, a = 20.063(2), b = 10.858(1), c =21.384(2) Å, β = 105.818(9)°, Z = 4), fac-(Ph4As)2[B6H3(CH3)(NO2)2] ·CH3CN (2) (triclinic, space group P1̄, a = 10.333(3), b = 10.695(3), c = 22.833(6) Å, α = 93.91(3), β = 96.79(3), γ = 104.56(2)°, Z = 2), and mer-(Ph4P)2[B6H3(CH3)(NO2)c2] (3) (triclinic, space group P1̄, a - 10.100(1), b = 10.402(3), c = 22.923(3) Å, α = 96.328(18), β = 89.928(12), γ = 107.963(16)°, Z = 2). The 11B NMR spectra and the vibrational spectra of the methylnitro compounds are discussed and compared with those of the monomethyl- and mononitro-closo-hexaborates.


Sign in / Sign up

Export Citation Format

Share Document