Synthesis and anion binding properties of porphyrins and related compounds

2016 ◽  
Vol 20 (08n11) ◽  
pp. 950-965 ◽  
Author(s):  
Flávio Figueira ◽  
João M.M. Rodrigues ◽  
Andreia A.S. Farinha ◽  
José A.S. Cavaleiro ◽  
João P.C. Tomé

Over the last two decades the preparation of pyrrole-based receptors for anion recognition has attracted considerable attention. In this regard porphyrins, phthalocyanines and expanded porphyrins have been used as strong and selective receptors while the combination of those with different techniques and materials can boost their applicability in different applications as chemosensors and extracting systems. Improvements in the field, including the synthesis of this kind of compounds, can contribute to the development of efficient, cheap, and easy-to-prepare anion receptors. Extensive efforts have been made to improve the affinity and selectivity of these compounds and the continuous expansion of related research makes this chemistry even more promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles.

2004 ◽  
Vol 69 (5) ◽  
pp. 1063-1079 ◽  
Author(s):  
Alessandro Casnati ◽  
Francesca Bonetti ◽  
Francesco Sansone ◽  
Franco Ugozzoli ◽  
Rocco Ungaro

Calix[4]arenes in the 1,3-alternate conformation (1-3) and bearing activated amide groups at the upper rim have been synthesized and their anion binding properties studied and compared with conformationally mobile (4) or cone (Ib) receptors having the same binding groups. Association constants determined in CDCl3 show a stronger complexation for Y-shaped carboxylate anions and a higher efficiency for receptors (Ib and 3) bearing dichloroacetamido moieties as hydrogen bonding donor groups. Molecular modeling studies performed on the cone derivative (Ib) and its 1,3-alternate isomer (10) and ab initio calculations on 4-methoxyaniline derivatives (11-13) used as simplified models, reveal that the α,α-dichloroacetamido moieties bind anions in a bidentate fashion using both the N-H and the CHCl2 as hydrogen bonding donor groups. This explains the higher efficiency in carboxylate binding found for Ib and 3 that incorporate the dichloroacetamido binding unit in their structures.


RSC Advances ◽  
2017 ◽  
Vol 7 (19) ◽  
pp. 11253-11258 ◽  
Author(s):  
Sheila Ruiz-Botella ◽  
Pietro Vidossich ◽  
Gregori Ujaque ◽  
Eduardo Peris ◽  
Paul D. Beer

The preparation and anion binding properties of 1,3,5-tri-substituted benzene platform-based tripodal receptors containing halogen bonding (XB) iodo-imidazolium and iodo-triazolium motifs, and hydrogen bonding (HB) analogues are described.


1981 ◽  
Vol 199 (3) ◽  
pp. 749-756 ◽  
Author(s):  
Yuichi Sugiyama ◽  
Tadataka Yamada ◽  
Neil Kaplowitz

In order to gain insight into the phylogeny and physiological significance of organic-anion-binding proteins in the liver, the hepatic glutathione S-transferases of rat and a typical elasmobranch, the thorny-back shark (Platyrhinoides triseriata), were compared with respect to both glutathione S-transferase activites and organic-anion-binding properties. On gel filtration (Sephadex G-75, Superfine grade) of rat cytosol, the elution volumes of enzyme activities with 1-chloro-2,4-dinitrobenzene and p-nitrobenzyl chloride as substrates were identical (rat Y-fractions; Mr 45000). In contrast, two peaks of enzyme activity for 1-chloro-2,4-dinitrobenzene with elution volumes corresponding to Mr 52000 (PLAT Y1) and Mr 45000 (PLAT Y2) were detected on gel filtration of P. triseriata cytosol. Only fraction PLAT Y2 had enzyme activity with p-nitrobenzyl chloride. Enzyme kinetic studies showed that rat Y-fraction had higher affinities for both 1-chloro-2,4-dinitrobenzene and glutathione than PLAT Y1- and PLAT Y2-fractions. The two forms of P. triseriata glutathione S-transferases differed greatly in affinity for glutathione. At a glutathione concentration that we found to be physiological in P. triseriata, PLAT Y2 accounted for approx. 70% of the total glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene. Binding studies revealed that PLAT Y1 and PLAT Y2 fractions had much lower affinities for sulphobromophthalein and bilirubin than rat Y-fraction. In contrast, binding affinities of PLAT Y1 and PLAT Y2 for Rose Bengal and 1-anilino-8-naphthalenesulphonate were comparable with that of rat Y-fraction. Inhibitory kinetics suggested that sulphobromophthalein and Rose Bengal were non-competitive inhibitors of glutathione S-transferase activities when 1-chloro-2,4-dinitrobenzene was used as substrate for both PLAT Y1 and PLAT Y2. The major glutathione S-transferase from the PLAT Y2 fraction was purified 81-fold by sequential chromatography on Sephadex G-75, DEAE-Sephadex and hydroxyapatite, and consisted of two identical subunits with pI7.7. The highly enriched Y2-fraction retained high affinity binding of Rose Bengal and 1-anilino-8-naphthalenesulphonate.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1788
Author(s):  
Patryk Niedbała ◽  
Kajetan Dąbrowa ◽  
Agnieszka Cholewiak-Janusz ◽  
Janusz Jurczak

Herein, we present the synthesis and anion binding studies of a family of homologous molecular receptors 4–7 based on a DITIPIRAM (8-propyldithieno-[3,2-b:2′,3′-e]-pyridine-3,5-di-amine) platform decorated with various urea para-phenyl substituents (NO2, F, CF3, and Me). Solution, X-ray, and DFT studies reveal that the presented host–guest system offers a convergent array of four urea NH hydrogen bond donors to anions allowing the formation of remarkably stable complexes with carboxylates (acetate, benzoate) and chloride anions in solution, even in competitive solvent mixtures such as DMSO-d6/H2O 99.5/0.5 (v/v) and DMSO-d3/MeOH-d3 9:1 (v/v). The most effective derivatives among the series turned out to be receptors 5 and 6 containing electron-withdrawing F- and -CF3para-substituents, respectively.


2016 ◽  
Vol 7 (4) ◽  
pp. 2524-2531 ◽  
Author(s):  
Rana A. Bilbeisi ◽  
Thirumurugan Prakasam ◽  
Matteo Lusi ◽  
Roberto El Khoury ◽  
Carlos Platas-Iglesias ◽  
...  

We report the anion-recognition properties and anion-mediated templation of Metal-Organic knots and links in aqueous solutions.


RSC Advances ◽  
2016 ◽  
Vol 6 (40) ◽  
pp. 33880-33887 ◽  
Author(s):  
S. Byrne ◽  
K. M. Mullen

Herein we report the development of a new series of surface bound triazolium based anion sensors. Differences in the chemical reactivity and anion binding properties were observed; highlighting the need for good surface characterisation techniques such as HR MAS NMR.


Synthesis ◽  
2014 ◽  
Vol 47 (06) ◽  
pp. 861-870
Author(s):  
Markus Albrecht ◽  
Zhanhu Sun ◽  
Fangfang Pan ◽  
Michel Waringo

2014 ◽  
Vol 50 (80) ◽  
pp. 11863-11866 ◽  
Author(s):  
Murat K. Deliomeroglu ◽  
Vincent M. Lynch ◽  
Jonathan L. Sessler

Acyclic tetrapyrrolic receptors display high affinity for dihydrogenphosphate and pyrophosphate anions in CHCl3 with anion recognition enhancing the solubility of the receptor.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3205
Author(s):  
Krystyna Maslowska-Jarzyna ◽  
Maria L. Korczak ◽  
Jakub A. Wagner ◽  
Michał J. Chmielewski

Owing to their strong carbazole chromophore and fluorophore, as well as to their powerful and convergent hydrogen bond donors, 1,8-diaminocarbazoles are amongst the most attractive and synthetically versatile building blocks for the construction of anion receptors, sensors, and transporters. Aiming to develop carbazole-based colorimetric anion sensors, herein we describe the synthesis of 1,8-diaminocarbazoles substituted with strongly electron-withdrawing substituents, i.e., 3,6-dicyano and 3,6-dinitro. Both of these precursors were subsequently converted into model diamide receptors. Anion binding studies revealed that the new receptors exhibited significantly enhanced anion affinities, but also significantly increased acidities. We also found that rear substitution of 1,8-diamidocarbazole with two nitro groups shifted its absorption spectrum into the visible region and converted the receptor into a colorimetric anion sensor. The new sensor displayed vivid color and fluorescence changes upon addition of basic anions in wet dimethyl sulfoxide, but it was poorly selective; because of its enhanced acidity, the dominant receptor-anion interaction for most anions was proton transfer and, accordingly, similar changes in color were observed for all basic anions. The highly acidic and strongly binding receptors developed in this study may be applicable in organocatalysis or in pH-switchable anion transport through lipophilic membranes.


Sign in / Sign up

Export Citation Format

Share Document