scholarly journals EXACT SOLUTIONS TO LATTICE BOUSSINESQ-TYPE EQUATIONS

2012 ◽  
Vol 19 (04) ◽  
pp. 1250031 ◽  
Author(s):  
WEI FENG ◽  
SONG-LIN ZHAO ◽  
DA-JUN ZHANG

In this paper several kinds of exact solutions to lattice Boussinesq-type equations are constructed by means of generalized Cauchy matrix approach, including soliton solutions and mixed solutions. The introduction of the general condition equation set yields that all solutions contain two kinds of plane-wave factors.

Author(s):  
Meng-Li Qin ◽  
Xiao-Yong Wen ◽  
Cui-Lian Yuan

Under consideration is a modified Toda lattice system with a perturbation parameter, which may describe the particle motion in a lattice. With the aid of symbolic computation Maple, the discrete generalized [Formula: see text]-fold Darboux transformation (DT) of this system is constructed for the first time. Different types of exact solutions are derived by applying the resulting DT through choosing different [Formula: see text]. Specifically, standard soliton solutions, rational solutions and their mixed solutions are given via the [Formula: see text]-fold DT, [Formula: see text]-fold DT and [Formula: see text]-fold DT, respectively. Limit states of various exact solutions are analyzed via the asymptotic analysis technique. Compared with the known results, we find that the asymptotic states of mixed solutions of standard soliton and rational solutions are consistent with the asymptotic analysis results of solitons and rational solutions alone. Soliton interaction and propagation phenomena are shown graphically. Numerical simulations are used to explore relevant soliton dynamical behaviors. These results and properties might be helpful for understanding lattice dynamics.


2020 ◽  
Vol 12 (4) ◽  
pp. 50-59
Author(s):  
Ruslan Matviichuk

The Harry Dym equation is the third-order evolutionary partial differential equation. It describes a system in which dispersion and nonlinearity are coupled together. It is a completely integrable nonlinear evolution equation that may be solved by means of the inverse scattering transform. It has an infinite number of conservation laws and does not have the Painleve property. The Harry Dym equation has strong links to the Korteweg – de Vries equation and it also has many properties of soliton solutions. A connection was established between this equation and the hierarchies of the Kadomtsev – Petviashvili equation. The Harry Dym equation has applications in acoustics: with its help, finite-gap densities of the acoustic operator are constructed. The paper considers a generalization of the Harry Dym equation, for the study of which the methods of the theory of finite-dimensional dynamics are applied. The theory of finite-dimensional dynamics is a natural development of the theory of dynamical systems. Dynamics make it possible to find families that depends on a finite number of parameters among all solutions of evolutionary differential equations. In our case, this approach allows us to obtain some classes of exact solutions of the generalized equation, and also indicates a method for numerically constructing solutions.


2016 ◽  
Vol 71 (12) ◽  
pp. 1151-1158 ◽  
Author(s):  
Song-lin Zhao ◽  
Ying-ying Sun

AbstractWe investigate a discrete negative order potential Korteweg–de Vries (npKdV) equation via the generalised Cauchy matrix approach. Solutions more than multisoliton solutions of this equation are derived by solving the determining equation set. We also show the semidiscrete equation and continuous equation together with their exact solutions by considering the continuum limits.


2009 ◽  
Vol 42 (40) ◽  
pp. 404005 ◽  
Author(s):  
Frank Nijhoff ◽  
James Atkinson ◽  
Jarmo Hietarinta

2006 ◽  
Vol 61 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Zonghang Yang

Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equation) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation). To our knowledge the exact solutions for the first equation were still not obtained and the obtained exact solutions for the second were just N-soliton solutions. In this paper we present kinds of new exact solutions by using the extended tanh-function method.


2021 ◽  
Vol 35 (13) ◽  
pp. 2150168
Author(s):  
Adel Darwish ◽  
Aly R. Seadawy ◽  
Hamdy M. Ahmed ◽  
A. L. Elbably ◽  
Mohammed F. Shehab ◽  
...  

In this paper, we use the improved modified extended tanh-function method to obtain exact solutions for the nonlinear longitudinal wave equation in magneto-electro-elastic circular rod. With the aid of this method, we get many exact solutions like bright and singular solitons, rational, singular periodic, hyperbolic, Jacobi elliptic function and exponential solutions. Moreover, the two-dimensional and the three-dimensional graphs of some solutions are plotted for knowing the physical interpretation.


2021 ◽  
Vol 10 (1) ◽  
pp. 374-384
Author(s):  
Mustafa Inc ◽  
E. A. Az-Zo’bi ◽  
Adil Jhangeer ◽  
Hadi Rezazadeh ◽  
Muhammad Nasir Ali ◽  
...  

Abstract In this article, (2+1)-dimensional Ito equation that models waves motion on shallow water surfaces is analyzed for exact analytic solutions. Two reliable techniques involving the simplest equation and modified simplest equation algorithms are utilized to find exact solutions of the considered equation involving bright solitons, singular periodic solitons, and singular bright solitons. These solutions are also described graphically while taking suitable values of free parameters. The applied algorithms are effective and convenient in handling the solution process for Ito equation that appears in many phenomena.


2018 ◽  
Vol 32 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jiangen Liu ◽  
Yufeng Zhang

This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg–de Vries equation with space–time local fractional derivatives. By using the improved [Formula: see text]-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.


Author(s):  
A. Tripathy ◽  
S. Sahoo ◽  
S. Saha Ray ◽  
M. A. Abdou

In this paper, the newly derived solutions for the optical soliton of Kerr law nonlinearity form of Biswas–Arshed model are investigated. The exact solutions are extracted by deploying two different novel methods namely, [Formula: see text]-expansion method and Riccati–Bernoulli sub-ODE method. Furthermore, in different conditions, the resultants show different wave solutions like singular, kink, anti-kink, periodic, rational, exponential and dark soliton solutions. Also, the dynamics of the attained solutions are presented graphically.


Sign in / Sign up

Export Citation Format

Share Document