Community Benefits and UK Offshore Wind Farms: Evolving Convergence in a Divergent Practice

Author(s):  
John Glasson

The Offshore Wind sector is a major, dynamic, and rapidly evolving renewable energy industry. This is particularly so in Europe, and especially in the UK. Associated with the growth of the industry has been a growth of interest in community benefits as voluntary measures provided by a developer to the host community. However, in many cases, and for some of the large North Sea distant offshore wind farms, the benefits packages have been disparate and pro rata much smaller than for the well-established onshore wind farm industry. However, there are signs of change. This paper explores the issues of community benefits for the UK offshore sector and evolving practice, as reflected in a macro study of the adoption of community benefits approaches across the industry. This is followed by a more in-depth micro- approach, which explores approaches that have been adopted in three case studies of recent OWF projects — Aberdeen, Beatrice and the Hornsea Array. Whilst there is still much divergence in practice, there are also examples of some convergence, and the development of a more replicable practice. Particularly notable is the adoption of annual community benefits funds, as the key element of community benefits schemes/agreements between developers, local authorities and local communities.

Author(s):  
S. M. S. M. K. Samarakoon ◽  
O. T. Gudmestad

Wind farm technology can be considered as one of the best available techniques to deliver renewable energy. Similarly, the number of wind farms has been growing rapidly owing to their contribution to sustainable development. Recently also, there has been a growing awareness of the need to develop a plentiful number of wind farms offshore rather than onshore. This is due to the consideration that the offshore wind farms are more beneficial than onshore with respect to their exposure to higher wind speeds while covering extensive areas. Less turbulence offshore also allows the turbines to harvest the available energy more effectively than onshore and to reduce the fatigue on turbines. Furthermore, most of the offshore wind farms are located in remote areas, which helps to avoid noise effects and the visual burden (shadows) on society. However, the malfunctioning of the turbines in offshore wind farms after a few months or years from their commissioning is a one of the challenging issue. The outcome of the failures leads to large financial losses owing to cost-intensive repairs and weather-related delays. Therefore, identification of potential failures at the early stages of development through a technology qualification procedure will help to minimize the loss of financial resources by increasing the reliability of the systems and the availability of wind power. Basically, appraisal of risk and reliability aspects is playing a key role in this qualification process in order to confirm that the system will perform as intended. This study identifies some recent historical failures in offshore wind farms causing significant financial losses. Further, it discusses the reasons of the failures and the possibility to overcome future obstacles in developing offshore wind farms using a technology qualification procedure. Finally, this paper discusses whether the existing technology qualification procedure can be directly applied for offshore wind farms, and what important modifications are necessary.


Author(s):  
Caitlin Forinash ◽  
Bryony DuPont

An Extended Pattern Search (EPS) approach is developed for offshore floating wind farm layout optimization while considering challenges such as high cost and harsh ocean environments. This multi-level optimization method minimizes the costs of installation and operations and maintenance, and maximizes power development in a unidirectional wind case by selecting the size and position of turbines. The EPS combines a deterministic pattern search algorithm with three stochastic extensions to avoid local optima. The EPS has been successfully applied to onshore wind farm optimization and enables the inclusion of advanced modeling as new technologies for floating offshore wind farms emerge. Three advanced models are incorporated into this work: (1) a cost model developed specifically for this work, (2) a power development model that selects hub height and rotor radius to optimize power production, and (3) a wake propagation and interaction model that determines aerodynamic effects. Preliminary results indicate the differences between proposed optimal offshore wind farm layouts and those developed by similar methods for onshore wind farms. The objective of this work is to maximize profit; given similar parameters, offshore wind farms are suggested to have approximately 24% more turbines than onshore farms of the same area. EPS layouts are also compared to those of an Adapted GA; 100% efficiency is found for layouts containing twice as many turbines as the layout presented by the Adapted GA. Best practices are derived that can be employed by offshore wind farm developers to improve the layout of platforms, and may contribute to reducing barriers to implementation, enabling developers and policy makers to have a clearer understanding of the resulting cost and power production of computationally optimized farms; however, the unidirectional wind case used in this work limits the representation of optimized layouts at real wind sites. Since there are currently no multi-turbine floating offshore wind farm projects operational in the United States, it is anticipated that this work will be used by developers when planning array layouts for future offshore floating wind farms.


2014 ◽  
Vol 11 (1) ◽  
pp. 35-39 ◽  
Author(s):  
D. Hill ◽  
K. R. W. Bell ◽  
D. McMillan ◽  
D. Infield

Abstract. The growth of wind power production in the electricity portfolio is striving to meet ambitious targets set, for example by the EU, to reduce greenhouse gas emissions by 20% by 2020. Huge investments are now being made in new offshore wind farms around UK coastal waters that will have a major impact on the GB electrical supply. Representations of the UK wind field in syntheses which capture the inherent structure and correlations between different locations including offshore sites are required. Here, Vector Auto-Regressive (VAR) models are presented and extended in a novel way to incorporate offshore time series from a pan-European meteorological model called COSMO, with onshore wind speeds from the MIDAS dataset provided by the British Atmospheric Data Centre. Forecasting ability onshore is shown to be improved with the inclusion of the offshore sites with improvements of up to 25% in RMS error at 6 h ahead. In addition, the VAR model is used to synthesise time series of wind at each offshore site, which are then used to estimate wind farm capacity factors at the sites in question. These are then compared with estimates of capacity factors derived from the work of Hawkins et al. (2011). A good degree of agreement is established indicating that this synthesis tool should be useful in power system impact studies.


2013 ◽  
Vol 724-725 ◽  
pp. 501-505
Author(s):  
Xuan Xu ◽  
Yuan Zeng ◽  
Xin Ze Wang ◽  
Peng Li ◽  
Yong Zhang

As the wind power penetration continues to increase, one of the main challenges faced in power operation is to maintain the system reliability when committing an appropriate amount of power from a wind farm in the lead time. This paper presents an approximate model for estimating offshore winds in the domain of meteorology, raising the accuracy and comparability between offshore and onshore wind power. And then, considering the discrepancy in wind speed fluctuations between offshore and onshore sites and difference in operation characteristics between double-fed induction generators and permanent magnet synchronous generators, this paper studied the different influences on the reserve capacity due to the offshore and onshore wind farms committing the power system. Comparing with the onshore wind farms, offshore wind farms have more positive effective on the reliability of the grid and are suitable for more economic operation scheme.


2020 ◽  
Vol 77 (3) ◽  
pp. 890-900
Author(s):  
Elizabeth T Methratta

Abstract Offshore wind farms often co-occur with biodiverse marine ecosystems with high ecological, economic, and cultural value. Yet there are many uncertainties about how wind farms affect marine organisms and their environment. The before–after–control–impact (BACI) design, an approach that compares an impact location with an unaffected control both before and after the intervention, is the most common method used to study how offshore wind farms affect finfish. Unfortunately, this design has several methodological limitations that undermine its ability to detect effects in these studies. An alternative approach, the before–after-gradient (BAG) design, would sample along a gradient with increasing distance from the turbines both before and after the intervention, and could overcome many of the limitations of BACI. The BAG design would eliminate the difficult task of finding a suitable control, allow for the assessment of the spatial scale and extent of wind farm effects, and improve statistical power by incorporating distance as an independent variable in analytical models rather than relegating it to the error term. This article explores the strengths and weaknesses of the BACI and BAG designs in the context of offshore wind development and suggests an approach to incorporating the BAG design into existing fisheries surveys and a regional monitoring framework.


2019 ◽  
Vol 137 ◽  
pp. 01049
Author(s):  
Anna Sobotka ◽  
Kajetan Chmielewski ◽  
Marcin Rowicki ◽  
Justyna Dudzińska ◽  
Przemysław Janiak ◽  
...  

Poland is currently at the beginning of the energy transformation. Nowadays, most of the electricity generated in Poland comes from coal combustion. However, in accordance to the European Union policy of reducing the emission of carbon dioxide to the atmosphere, there are already plans to switch to low-emission energy sources in Poland, one of which are offshore wind farms. The article presents the current regulatory environment of the offshore wind energy in Poland, along with a reference to Polish and European decarbonisation plans. In the further part of the article, the methods of determining the kinetic energy of wind and the power curve of a wind turbine are discussed. Then, on the basis of historical data of wind speeds collected in the area of the Baltic Sea, calculations are carried out leading to obtain statistical distributions of power that could be generated by an exemplary wind farm with a power capacity of 400 MW, located at the place of wind measurements. On their basis, statistical differences in the wind power generation between years, months of the year and hours of the day are analysed.


2011 ◽  
Vol 383-390 ◽  
pp. 3610-3616 ◽  
Author(s):  
Xin Yin Zhang ◽  
Zai Jun Wu ◽  
Si Peng Hao ◽  
Ke Xu

Offshore wind farm is developed in the ascendant currently. The reliable operation, power loss, investment cost and performance of wind farms were effect by the integration solutions of electrical interconnection system directly. Several new integration configurations based on VSC-HVDC were comparative analyzed. For the new HVDC topology applied the wind farm internal DC bus, the Variable Speed DC (VSDC) system that is suitable for those topologies was proposed. The structure of VSDC was discussed and maximum wind power tracking was simulated on the minimal system. It is clear that new integration configurations based on VSC-HVDC has good prospects.


2015 ◽  
Author(s):  
Thomas Nivet ◽  
Ema Muk-Pavic

Offshore wind energy is one of the most upcoming sources of energy, and it is already partially replacing the fossil fuelled power production. However, offshore wind turbine technology is also associated with harsher weather environment. Indeed, it experiences more challenging wind and wave conditions, which in turn limits the vessels capabilities to access the wind farms. Additionally, with the constant rise of power utilization, improvements in the Operation Maintenance (O&M) planning are crucial for the development of large isolated offshore wind farms. Improvements in the planning of the O&M for offshore wind farms could lead to considerable reduction in costs. For this reason, the interest of this research paper is the investigation of the most cost effective approach to offshore turbine maintenance strategies. This objective is achieved by implementing a simulation approach that includes a climate conditions analysis, an operation analysis, a failure evaluation and a simulation of the repairs. This paper points out how different O&M strategies can influence the sustainability of a wind farm.


2018 ◽  
Vol 77 (3) ◽  
pp. 1238-1246 ◽  
Author(s):  
Jean-Philippe Pezy ◽  
Aurore Raoux ◽  
Jean-Claude Dauvin

Abstract The French government is planning the construction of offshore wind farms (OWF) in the next decade (around 2900 MW). Following the European Environmental Impact Assessment Directive 85/337/EEC, several studies have been undertaken to identify the environmental conditions and ecosystem functioning at selected sites prior to OWF construction. However, these studies are generally focused on the conservation of some species and there is no holistic approach for analysing the effects arising from OWF construction and operation. The objective of this article is to promote a sampling strategy to collect data on the different ecosystem compartments of the future Dieppe-Le Tréport (DLT) wind farm site, adopting an ecosystem approach, which could be applied to other OWFs for the implementation of a trophic network analysis. For that purpose, an Ecopath model is used here to derive indices from Ecological Network Analysis (ENA) to investigate the ecosystem structure and functioning. The results show that the ecosystem is most likely detritus-based, associated with a biomass dominated by bivalves, which could act as a dead end for a classic trophic food web since their consumption by top predators is low in comparison to their biomass. The systemic approach developed for DLT OWF site should be applied for other French and European installations of Offshore Wind Farm.


Sign in / Sign up

Export Citation Format

Share Document