FINITE ELEMENT MODELING OF TRANSVERSE DEFORMATION IN REPRESENTATIVE VOLUME ELEMENTS OF CERAMIC MATRIX COMPOSITES (CMCs)

2010 ◽  
Vol 02 (01n02) ◽  
pp. 107-126 ◽  
Author(s):  
C. TANG ◽  
M. A. SHEIKH ◽  
D. R. HAYHURST

The paper reports the use of the finite element method to model longitudinal and transverse deformation of representative volume elements (RVE) of ceramic matrix composites subjected to uniaxial loading parallel to fibers. Cohesive elements have been used to model two forms of damage: fracture initiation and propagation both within the matrix, and along the fiber–matrix interface. From the knowledge of the constituent materials behavior, the FE technique has been used to predict the stress–strain behavior and the variation of Poisson's ratio of the RVE due to these two damage forms; but the model does not cater for fiber failure. The RVE predictions have been benchmarked against experimental results for Nicalon-CAS material and good agreement has been obtained. Comparison of the predicted behavior of the single Nicalon-CAS RVE with experimental data for unidirectional tows indicates that the stress–strain curve is predominantly controlled by the Weibull distribution of fiber failure stress, while the degradation of Poisson's ratio is determined by the Weibull distribution of interfacial strength. The same approach has been used for a HITCO C/C material for which transverse deformation behavior is unknown. The results for the HITCO C/C material, as for the Nicalon-CAS, show that the fiber behavior determines the ultimate failure of the RVE, and that interface debonding is the controlling mechanism for the variation of the Poisson ratio with axial strain.

2011 ◽  
Vol 78 (3) ◽  
Author(s):  
M. Blacklock ◽  
D. R. Hayhurst

This paper considers the multi-axial stress-strain-failure response of two commercially woven ceramic matrix composites. The different failure mechanisms of uni-axially stressed tows and woven composites are addressed. A model is postulated in which the local transverse and shear stressing, arising from the weave, instantaneously deactivate wake debonding and fiber pullout and initiates dynamic fiber failure; hence, triggering catastrophic failure of the axially stressed region of the tow. The model is shown to predict experimentally measured stress-strain-failure results for the woven composites considered. Simple stress-strain-failure models are also proposed for tows subjected to axial-transverse and axial-shear loadings, but due to the lack of experimental data they have not been validated.


2001 ◽  
Author(s):  
B. Yang ◽  
S. Mall

Abstract The present study develops a cohesive-shear-lag model to analyze the cycling stress-strain behavior of unidirectional fiber-reinforced ceramic matrix composites. The model, as a modification to a classical shear-lag model, takes into account matrix cracking, partial interfacial debonding, and partial breakage of fibers. The statistical nature of partial breakage of fibers is modeled by using a cohesive force law. The validity of the model is demonstrated by investigating stress-strain hysteresis loops of a unidirectional fiber-reinforced ceramic-glass matrix composite, SiC/1723. This example demonstrates the capability of the proposed model to characterize damage and deformation mechanisms of ceramic matrix composites under tension-tension cycling loading. The dominant progressive damage mechanism with cycling in this case is shown to be accumulation of fibers breakage, accompanied by increase in interfacial debonding and smoothening of frictional debonded interface.


Sign in / Sign up

Export Citation Format

Share Document