scholarly journals Wave Tank Testing of a Pendulum Wave Energy Converter 1:12 Scale Model

2017 ◽  
Vol 09 (02) ◽  
pp. 1750024 ◽  
Author(s):  
Pozzi Nicola ◽  
Bracco Giovanni ◽  
Passione Biagio ◽  
Sirigu Sergej Antonello ◽  
Vissio Giacomo ◽  
...  

Wave Energy is a widespread, reliable renewable energy source. The early study on Wave Energy dates back in the 70’s, with a particular effort in the last and present decade to make Wave Energy Converters (WECs) more profitable and predictable. The PeWEC (Pendulum Wave Energy Converter) is a pendulum-based WEC. The research activities described in the present work aim to develop a pendulum converter for the Mediterranean Sea, where waves are shorter, thus with a higher frequency compared to the ocean waves, a characteristic well agreeing with the PeWEC frequency response. The mechanical equations of the device are developed and coupled with the hydrodynamic Cummins equation. The work deals with the design and experimental tank test of a 1:12 scale prototype. The experimental data recorded during the testing campaign are used to validate the numerical model previously described. The numerical model proved to be in good agreement with the experiments.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2364 ◽  
Author(s):  
Hengxu Liu ◽  
Feng Yan ◽  
Fengmei Jing ◽  
Jingtao Ao ◽  
Zhaoliang Han ◽  
...  

This paper introduces a new point-absorber wave energy converter (WEC) with a moonpool buoy—the moonpool platform wave energy converter (MPWEC). The MPWEC structure includes a cylinder buoy and a moonpool buoy and a Power Take-off (PTO) system, where the relative movement between the cylindrical buoy and the moonpool buoy is exploited by the PTO system to generate energy. A 1:10 scale model was physically tested to validate the numerical model and further prove the feasibility of the proposed system. The motion responses of and the power absorbed by the MPWEC studied in the wave tank experiments were also numerically analyzed, with a potential approach in the frequency domain, and a computational fluid dynamics (CFD) code in the time domain. The good agreement between the experimental and the numerical results showed that the present numerical model is accurate enough, and therefore considering only the heave degree of freedom is acceptable to estimate the motion responses and power absorption. The study shows that the MPWEC optimum power extractions is realized over a range of wave frequencies between 1.7 and 2.5 rad/s.


Author(s):  
Aurélien Babarit ◽  
Benjamin Gendron ◽  
Jitendra Singh ◽  
Cécile Mélis ◽  
Philippe Jean

Since 2009, SBM Offshore has been developing the S3 Wave Energy Converter (S3 WEC). It consists in a long flexible tube made of an Electro-Active Polymer (EAP). Thus, the structural material is also the Power Take Off (PTO). In order to optimize the S3 WEC, a hydro-elastic numerical model able to predict the device dynamic response has been developed. The inner flow, elastic wall deformations and outer flow are taken into account in the model under the following assumptions: Euler equation is used for the inner flow. The flow is also assumed to be uniform. Elastic deformation of the wall tube is linearized. The outer flow is modeled using linear potential theory. These equations have been combined in order to build the numerical model. First, they are solved in the absence of the outer fluid in order to obtain the modes of response of the device. Secondly, the outer fluid is taken into account and the equation of motion is solved by making use of modal expansion. Meanwhile, experimental validation tests were conducted in the ocean basin at Ecole Centrale De Nantes. The scale model is 10m long tube made of EAP. The tube deformations were measured using the electro-active polymer. The model was also equipped with sensors in order to measure the inner pressure. Comparisons of the deformation rate between the numerical model and experimental results show good agreement, provided that the wall damping is calibrated. Eventually, results of a technico-economical parametric study of the dimensions of the device are presented.


Author(s):  
Stefano Parmeggiani ◽  
Made Jaya Muliawan ◽  
Zhen Gao ◽  
Torgeir Moan ◽  
Erik Friis-Madsen

The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has to be carried out numerically, through coupled analyses of alternative solutions. The present study deals with the preliminary hydrodynamic characterization of Wave Dragon needed in order to calibrate the numerical model to be used for the mooring design. A hydrodynamic analysis of the small scale model in the frequency domain is performed by the software HydroD, which uses WAMIT as core software. The quadratic damping term, accounting for the viscous effect, is determined through an iterative procedure aimed at matching numerical predictions on the mooring tension, derived through time domain coupled analysis, with experimental results derived from tank tests of a small scale model. Due to the complex geometry of the device, a sensitivity analysis is performed to discuss the influence of the mean position on the quality of the numerical predictions. Good correspondence is achieved between the experimental and numerical model. The numerical model is hence considered reliable for future design applications.


Sign in / Sign up

Export Citation Format

Share Document