Kinematic Aspects in Modeling Large-Amplitude Vibration of Axially Moving Beams

2019 ◽  
Vol 11 (02) ◽  
pp. 1950021 ◽  
Author(s):  
Yuanbin Wang ◽  
Hu Ding ◽  
Li-Qun Chen

This paper clarified kinematic aspects of motion of axially moving beams undergoing large-amplitude vibration. The kinematics was formulated in the mixed Eulerian–Lagrangian framework. Based on the kinematic analysis, the governing equations of nonlinear vibration were derived from the extended Hamilton principle and the higher-order shear beam theory. The derivation considered the effects of material parameters on the beam deformation. The proposed governing equations were compared with a few previous governing equations. The comparisons show that proposed equations are with higher precision. Besides, the proposed equations can be viewed as the asymptotic governing equations of Lagrange’s equations of motion for large displacement. Finally, the corresponding boundary conditions and the comparison between the presented model equation and classical model equation were provided.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ren Yongsheng ◽  
Zhang Xingqi ◽  
Liu Yanghang ◽  
Chen Xiulong

The dynamical analysis of a rotating thin-walled composite shaft with internal damping is carried out analytically. The equations of motion are derived using the thin-walled composite beam theory and the principle of virtual work. The internal damping of shafts is introduced by adopting the multiscale damping analysis method. Galerkin’s method is used to discretize and solve the governing equations. Numerical study shows the effect of design parameters on the natural frequencies, critical rotating speeds, and instability thresholds of shafts.


Sign in / Sign up

Export Citation Format

Share Document