scholarly journals On the error term of a lattice counting problem, II

2020 ◽  
Vol 16 (05) ◽  
pp. 1153-1160
Author(s):  
Olivier Bordellès

Under the Riemann Hypothesis, we improve the error term in the asymptotic formula related to the counting lattice problem studied in a first part of this work. The improvement comes from the use of Weyl’s bound for exponential sums of polynomials and a device due to Popov allowing us to get an improved main term in the sums of certain fractional parts of polynomials.

2012 ◽  
Vol 09 (02) ◽  
pp. 431-445 ◽  
Author(s):  
DEYU ZHANG ◽  
MEIMEI LÜ ◽  
WENGUANG ZHAI

For each integer n ≥ 2, let [Formula: see text] be the index of composition of n, where γ(n) ≔ ∏p∣np. The index of composition of an integer measures the multiplicity of its prime factors. In this paper, we obtain a new asymptotic formula of the sum ∑n≤xλ-k(n). Furthermore, we improve the error term under the Riemann Hypothesis.


2012 ◽  
Vol 08 (07) ◽  
pp. 1741-1761 ◽  
Author(s):  
JERZY KACZOROWSKI ◽  
KAZIMIERZ WIERTELAK

We study an asymptotic formula for the sum of values of the Euler φ-function twisted by a real Dirichlet character. The error term is split into the arithmetic and the analytic part. The former is studied with minimal use of analytic tools in contrast to the latter, where the analysis depends heavily on the distribution of the non-trivial zeros of the corresponding Dirichlet L-function. The results of the present paper are an extension of a recent work by the authors, where the case of the classical Euler φ-function has been studied. The present, more general situation invites new technical difficulties. Not all of them can be successfully overcome. For instance, satisfactory omega results for the analytic part are proved in the case of an even Dirichlet character only. Nevertheless, a method providing good omega estimates for the arithmetic part as well as for the complete error term is developed. Moreover, it is noted that the Riemann Hypothesis for the involved Dirichlet L-function is equivalent to a sufficiently sharp estimation of the analytic part. This shows in particular that the arithmetic part can be much larger than the corresponding analytic part.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alexander P. Mangerel

Abstract Let $\varepsilon> 0$ be sufficiently small and let $0 < \eta < 1/522$ . We show that if X is large enough in terms of $\varepsilon $ , then for any squarefree integer $q \leq X^{196/261-\varepsilon }$ that is $X^{\eta }$ -smooth one can obtain an asymptotic formula with power-saving error term for the number of squarefree integers in an arithmetic progression $a \pmod {q}$ , with $(a,q) = 1$ . In the case of squarefree, smooth moduli this improves upon previous work of Nunes, in which $196/261 = 0.75096\ldots $ was replaced by $25/36 = 0.69\overline {4}$ . This also establishes a level of distribution for a positive density set of moduli that improves upon a result of Hooley. We show more generally that one can break the $X^{3/4}$ -barrier for a density 1 set of $X^{\eta }$ -smooth moduli q (without the squarefree condition). Our proof appeals to the q-analogue of the van der Corput method of exponential sums, due to Heath-Brown, to reduce the task to estimating correlations of certain Kloosterman-type complete exponential sums modulo prime powers. In the prime case we obtain a power-saving bound via a cohomological treatment of these complete sums, while in the higher prime power case we establish savings of this kind using p-adic methods.


2016 ◽  
Vol 12 (03) ◽  
pp. 737-764 ◽  
Author(s):  
Stephan Baier

Under the Riemann Hypothesis for Dirichlet [Formula: see text]-functions, we improve on the error term in a smoothed version of an estimate for the density of elliptic curves with square-free [Formula: see text], where [Formula: see text] is the discriminant, by the author and Browning [Inhomogeneous cubic congruences and rational points on Del Pezzo surfaces, J. Reine Angew. Math. 680 (2013) 69–151]. To achieve this improvement, we elaborate on our methods for counting weighted solutions of inhomogeneous cubic congruences to powerful moduli. The novelty lies in going a step further in the explicit evaluation of complete exponential sums and saving a factor by averaging over the moduli.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1254
Author(s):  
Xue Han ◽  
Xiaofei Yan ◽  
Deyu Zhang

Let Pc(x)={p≤x|p,[pc]areprimes},c∈R+∖N and λsym2f(n) be the n-th Fourier coefficient associated with the symmetric square L-function L(s,sym2f). For any A>0, we prove that the mean value of λsym2f(n) over Pc(x) is ≪xlog−A−2x for almost all c∈ε,(5+3)/8−ε in the sense of Lebesgue measure. Furthermore, it holds for all c∈(0,1) under the Riemann Hypothesis. Furthermore, we obtain that asymptotic formula for λf2(n) over Pc(x) is ∑p,qprimep≤x,q=[pc]λf2(p)=xclog2x(1+o(1)), for almost all c∈ε,(5+3)/8−ε, where λf(n) is the normalized n-th Fourier coefficient associated with a holomorphic cusp form f for the full modular group.


Author(s):  
L. Mirsky

I. Throughout this paper k1, …, k3 will denote s ≥ I fixed distinct positive integers. Some years ago Pillai (1936) found an asymptotic formula, with error term O(x/log x), for the number of positive integers n ≤ x such that n + k1, …, n + k3 are all square-free. I recently considered (Mirsky, 1947) the corresponding problem for r-free integers (i.e. integers not divisible by the rth power of any prime), and was able, in particular, to reduce the error term in Pillai's formula.Our present object is to discuss various generalizations and extensions of Pillai's problem. In all investigations below we shall be concerned with a set A of integers. This is any given, finite or infinite, set of integers greater than 1 and subject to certain additional restrictions which will be stated later. The elements of A will be called a-numbers, and the letter a will be reserved for them. A number which is not divisible by any a-number will be called A-free, and our main concern will be with the study of A-free numbers. Their additive properties have recently been investigated elsewhere (Mirsky, 1948), and some estimates obtained in that investigation will be quoted in the present paper.


2016 ◽  
Vol 103 (2) ◽  
pp. 231-249
Author(s):  
JUN FURUYA ◽  
MAKOTO MINAMIDE ◽  
YOSHIO TANIGAWA

We attempt to discuss a new circle problem. Let $\unicode[STIX]{x1D701}(s)$ denote the Riemann zeta-function $\sum _{n=1}^{\infty }n^{-s}$ ($\text{Re}\,s>1$) and $L(s,\unicode[STIX]{x1D712}_{4})$ the Dirichlet $L$-function $\sum _{n=1}^{\infty }\unicode[STIX]{x1D712}_{4}(n)n^{-s}$ ($\text{Re}\,s>1$) with the primitive Dirichlet character mod 4. We shall define an arithmetical function $R_{(1,1)}(n)$ by the coefficient of the Dirichlet series $\unicode[STIX]{x1D701}^{\prime }(s)L^{\prime }(s,\unicode[STIX]{x1D712}_{4})=\sum _{n=1}^{\infty }R_{(1,1)}(n)n^{-s}$$(\text{Re}\,s>1)$. This is an analogue of $r(n)/4=\sum _{d|n}\unicode[STIX]{x1D712}_{4}(d)$. In the circle problem, there are many researches of estimations and related topics on the error term in the asymptotic formula for $\sum _{n\leq x}r(n)$. As a new problem, we deduce a ‘truncated Voronoï formula’ for the error term in the asymptotic formula for $\sum _{n\leq x}R_{(1,1)}(n)$. As a direct application, we show the mean square for the error term in our new problem.


2000 ◽  
Vol 43 (2) ◽  
pp. 309-323 ◽  
Author(s):  
Manfred Kühleitner ◽  
Werner Georg Nowak

AbstractIn this article we consider sums S(t) = Σnψ (tf(n/t)), where ψ denotes, essentially, the fractional part minus ½ f is a C4-function with f″ non-vanishing, and summation is extended over an interval of order t. For the mean-square of S(t), an asymptotic formula is established. If f is algebraic this can be sharpened by the indication of an error term.


2011 ◽  
Vol 07 (03) ◽  
pp. 579-591 ◽  
Author(s):  
PAUL POLLACK

For each natural number N, let R(N) denote the number of representations of N as a sum of two primes. Hardy and Littlewood proposed a plausible asymptotic formula for R(2N) and showed, under the assumption of the Riemann Hypothesis for Dirichlet L-functions, that the formula holds "on average" in a certain sense. From this they deduced (under ERH) that all but Oϵ(x1/2+ϵ) of the even natural numbers in [1, x] can be written as a sum of two primes. We generalize their results to the setting of polynomials over a finite field. Owing to Weil's Riemann Hypothesis, our results are unconditional.


2020 ◽  
pp. 1-34
Author(s):  
Jiawei Lin ◽  
Greg Martin

Abstract Let $a_1$ , $a_2$ , and $a_3$ be distinct reduced residues modulo q satisfying the congruences $a_1^2 \equiv a_2^2 \equiv a_3^2 \ (\mathrm{mod}\ q)$ . We conditionally derive an asymptotic formula, with an error term that has a power savings in q, for the logarithmic density of the set of real numbers x for which $\pi (x;q,a_1)> \pi (x;q,a_2) > \pi (x;q,a_3)$ . The relationship among the $a_i$ allows us to normalize the error terms for the $\pi (x;q,a_i)$ in an atypical way that creates mutual independence among their distributions, and also allows for a proof technique that uses only elementary tools from probability.


Sign in / Sign up

Export Citation Format

Share Document