scholarly journals Brauer groups and Néron class groups

2020 ◽  
Vol 16 (10) ◽  
pp. 2275-2292
Author(s):  
Cristian D. González-Avilés

Let [Formula: see text] be a global field and let [Formula: see text] be a finite set of primes of [Formula: see text] containing the Archimedean primes. We generalize the duality theorem for the Néron [Formula: see text]-class group of an abelian variety [Formula: see text] over [Formula: see text] established previously by removing the requirement that the Tate–Shafarevich group of [Formula: see text] be finite. We also derive an exact sequence that relates the indicated group associated to the Jacobian variety of a proper, smooth and geometrically connected curve [Formula: see text] over [Formula: see text] to a certain finite subquotient of the Brauer group of [Formula: see text].

1993 ◽  
Vol 113 (2) ◽  
pp. 233-251 ◽  
Author(s):  
D. Holland ◽  
S. M. J. Wilson

AbstractWe present a new way of forming a grothendieck group with respect to exact sequences. A ‘defect’ is attached to each non-split sequence and the relation that would normally be derived from a collection of exact sequences is only effective if the (signed) sum of the corresponding defects is zero. The theory of the localization exact sequence and, in particular, of the relative group in this sequence is developed. The (‘locally free’) class group of a module category with exactness defect is defined and an idèlic formula for this is given. The role of torsion and of torsion-free modules is investigated. One aim of the work is to enhance the locally trivial, ‘class group’, invariants obtainable for a module while keeping to a minimum the local obstructions to the definition of such invariants.


1982 ◽  
Vol 34 (4) ◽  
pp. 996-1010 ◽  
Author(s):  
Heisook Lee ◽  
Morris Orzech

In a previous paper [13] one of us considered Brauer groups Br(C) and class groups Cl(C) attached to certain monoidal categories C of divisorial R-lattices. That paper showed that the groups arising for a suitable pair of categories C1 ⊆ C2 could be related by a tidy exact sequenceIt was shown that this exact sequence specializes to a number of exact sequences which had formerly been handled separately. At the same time the conventional setting of noetherian normal domains was replaced by that of Krull domains, thus generalizing previous results while also simplifying the proofs. This work was carried out in an affine setting, and one aim of the present paper is to carry these results over to Krull schemes. This will enable us to recover the non-affine version of an exact sequence obtained by Auslander [1, p. 261], as well as to introduce a new, non-affine version of a different sequence derived by the same author [2, Theorem 1].


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter considers the Dehn–Lickorish theorem, which states that when g is greater than or equal to 0, the mapping class group Mod(Sɡ) is generated by finitely many Dehn twists about nonseparating simple closed curves. The theorem is proved by induction on genus, and the Birman exact sequence is introduced as the key step for the induction. The key to the inductive step is to prove that the complex of curves C(Sɡ) is connected when g is greater than or equal to 2. The simplicial complex C(Sɡ) is a useful combinatorial object that encodes intersection patterns of simple closed curves in Sɡ. More detailed structure of C(Sɡ) is then used to find various explicit generating sets for Mod(Sɡ), including those due to Lickorish and to Humphries.


2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


2021 ◽  
Vol 157 (8) ◽  
pp. 1807-1852
Author(s):  
Matt Clay ◽  
Johanna Mangahas ◽  
Dan Margalit

We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal subgroup of the mapping class group that is not contained in any level $m$ congruence subgroup and (2) we produce an explicit example of a pseudo-Anosov mapping class with the property that all of its even powers have free normal closure and its odd powers normally generate the entire mapping class group. The technical theorem at the heart of our work is a new version of the windmill apparatus of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the projection complexes of Bestvina–Bromberg–Fujiwara.


1984 ◽  
Vol 36 (2) ◽  
pp. 206-239 ◽  
Author(s):  
E. Jespers ◽  
P. Wauters

The aim of this note is to study the class group of a central Ω-Krull ring and to determine in some cases whether a twisted (semi) group ring is a central Ω-Krull ring. In [8] we defined an Ω-Krull ring as a generalization of a commutative Krull domain. In the commutative theory, the class group plays an important role. In the second and third section, we generalize some results to the noncommutative case, in particular the relation between the class group of a central Ω-Krull ring and the class group of a localization. Some results are obtained in case the ring is graded. Theorem 3.2 establishes the relation between the class group and the graded class group. In particular, in the P.I. case we obtain that the class group is equal to the graded class group. As a consequence of a result on direct limits of Ω-Krull rings, we are able to derive a necessary and sufficient condition in order that a polynomial ring R[(Xi)i∊I] (I may be infinite) is a central Ω-Krull ring.


2004 ◽  
Vol 47 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Yasuhiro Goto

AbstractUsing weighted Delsarte surfaces, we give examples of K3 surfaces in positive characteristic whose formal Brauer groups have height equal to 5, 8 or 9. These are among the four values of the height left open in the article of Yui [11].


1966 ◽  
Vol 27 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Kenkichi Iwasawa

In the first part of the present paper, we shall make some simple observations on the ideal class groups of algebraic number fields, following the group-theoretical method of Tschebotarew. The applications on cyclotomic fields (Theorems 5, 6) may be of some interest. In the last section, we shall give a proof to a theorem of Kummer on the ideal class group of a cyclotomic field.


Sign in / Sign up

Export Citation Format

Share Document