High-Performance Anode Materials with Superior Structure of Fe3O4/FeS/rGO Composite for Lithium Ion Batteries

NANO ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. 2050128 ◽  
Author(s):  
Ruirui Gao ◽  
Suqin Wang ◽  
Zhaoxiu Xu ◽  
Hongbo Li ◽  
Shuiliang Chen ◽  
...  

In this work, we developed a simple one-step hydrothermal method to successfully prepare Fe3O4/FeS-reduced graphene oxide (Fe3O4/FeS/rGO) composite directly, which is a novel Lithium-ion batteries (LIBs) anode material. The characterization of Fe3O4/FeS/rGO composite demonstrates that octahedral Fe3O4/FeS particles are uniformly deposited on the rGO, leading to a strong synergy between them. The excellent structural design can make Fe3O4/FeS/rGO composite to have higher reversible capacity (744.7[Formula: see text]mAh/g at 0.1[Formula: see text]C after 50 cycles), excellent cycling performance and superior rate capability. This outstanding electrochemical behavior can be attributed to the conductivity network of rGO, which improves the composite electrode conductivity, facilitates the diffusion and transfer of ions and prevents the aggregation and pulverization of Fe3O4/FeS particles during the charging and discharging processes. Moreover, the Fe3O4/FeS/rGO electrode surface is covered with a thin solid-electrolyte interface (SEI) film and the octahedral structure of Fe3O4/FeS particles is still clearly visible, which indicates that composite electrode has excellent interface stability. We believe that the design of this composite structure will provide a new perspective for the further study of other transition metal oxides for LIBs.

2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 65266-65274 ◽  
Author(s):  
Tao Li ◽  
Xue Bai ◽  
Ning Lun ◽  
Yong-Xin Qi ◽  
Yun Tian ◽  
...  

An N-doped carbon-coated Ti–Fe–O multicomponent nanocomposite with a moderate Ti/Fe molar ratio of 1 : 2 exhibits good cycling performance as well as outstanding rate capability.


2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


2019 ◽  
Vol 43 (3) ◽  
pp. 1238-1246 ◽  
Author(s):  
Duo Zhang ◽  
Chaoqi Bi ◽  
Qingliu Wu ◽  
Guangya Hou ◽  
Guoqu Zheng ◽  
...  

It is a challenge to commercialize tin dioxide-based anodes for lithium-ion batteries due to their low rate capability and poor cycling performance of the electrodes.


Nanoscale ◽  
2015 ◽  
Vol 7 (28) ◽  
pp. 11940-11944 ◽  
Author(s):  
Yanjun Zhang ◽  
Li Jiang ◽  
Chunru Wang

A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process. It exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.


2015 ◽  
Vol 3 (12) ◽  
pp. 6392-6401 ◽  
Author(s):  
Bangjun Guo ◽  
Ke Yu ◽  
Hao Fu ◽  
Qiqi Hua ◽  
Ruijuan Qi ◽  
...  

Firework-shaped TiO2 microspheres embedded with few-layer MoS2 are prepared by a novel strategy, and the composite electrode exhibits excellent cycling performance, high capacity and rate capability compared to pure MoS2 and TiO2 electrodes.


RSC Advances ◽  
2015 ◽  
Vol 5 (128) ◽  
pp. 105643-105650 ◽  
Author(s):  
Yongliang Li ◽  
Wei Zhang ◽  
Huihua Cai ◽  
Jingwei Wang ◽  
Xiangzhong Ren ◽  
...  

The addition of ZnO significantly improved the cycling performance and rate capability of SnSb alloy anode material.


RSC Advances ◽  
2014 ◽  
Vol 4 (109) ◽  
pp. 63784-63791 ◽  
Author(s):  
Junke Ou ◽  
Yongzhi Zhang ◽  
Li Chen ◽  
Hongyan Yuan ◽  
Dan Xiao

The HDPC derived from human hair shows superior performance as an anode material for LIBs with high reversible capacity (1331 mA h g−1 at 0.1 A g−1) and excellent rate capability (205 mA h g−1 at 10 A g−1).


2017 ◽  
Vol 41 (21) ◽  
pp. 12969-12975 ◽  
Author(s):  
Yue Zhang ◽  
Yudai Huang ◽  
Yakun Tang ◽  
Hongyang Zhao ◽  
Yanjun Cai ◽  
...  

Bicontinuous hierarchical mesoporous LiFePO4/C microbelts have been synthesized using a simple dual-solvent electrospinning method for the first time. The sample exhibits a high reversible capacity (153 mA h g−1 at 0.5C), and an excellent high rate cycling performance.


Sign in / Sign up

Export Citation Format

Share Document