DAMAGE-CONTROLLABLE STRUCTURE SYSTEMS USING FRP COMPOSITES

2011 ◽  
Vol 05 (03) ◽  
pp. 241-258 ◽  
Author(s):  
Z. S. WU ◽  
MOHAMED F. M. FAHMY ◽  
GANG WU

Today, key infrastructures are required to have usability and repairability after earthquakes. Based on the requirements of the new codes, a mechanical model of damage-controllable structure using fiber reinforced polymers (FRPs) is proposed. Hence, the aim of the study is to examine the required recoverability for existing and new structures. First, an intensive study on the inelastic performance of FRP-retrofitted bridge columns was conducted. The study showed that recoverability of such columns is probable. Subsequently, an advanced FRP-strengthening design guideline that considers and evaluates structural recoverability is proposed. Second, innovative reinforcing rebars (steel fiber composite bars (SFCBs)) were developed to enhance the post-earthquake recoverability of new reinforced concrete (RC) bridges. The performance of RC bridge columns reinforced with two types of the innovative rebars, i.e. steel basalt-fiber composite bar (SBFCB) and steel carbon-fiber composite bar (SCFCB), were experimentally studied. Furthermore, numerical studies were conducted to investigate the performance of bond-controlled structures reinforced with the innovative rebars. Experimental results showed that SFCBs, as longitudinal reinforcement, guarantee the gradual increase of column strength in the inelastic stage and substantially mitigate column residual deformations. In the light of the analytical results, concrete-to-SFCB bond would be a reasonable tool to control the required recoverability, where both column post-yield stiffness and residual deformations could be controlled.

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2379
Author(s):  
Nick Wolter ◽  
Vinicius Carrillo Beber ◽  
Anna Sandinge ◽  
Per Blomqvist ◽  
Frederik Goethals ◽  
...  

Bisphenol F and aniline-based benzoxazine monomers were selected to fabricate basalt, glass and carbon fiber reinforced polybenzoxazine via vacuum infusion, respectively. The impacts of the type of fiber reinforcement on the resulting material properties of the fiber reinforced polymers (FRPs) were studied. FRPs exhibited a homogenous morphology with completely impregnated fibers and near-zero porosity. Carbon fiber reinforced polybenzoxazine showed the highest specific mechanical properties because of its low density and high modulus and strength. However, regarding the flammability, fire, smoke and toxicity properties, glass and basalt reinforced polybenzoxazine outperformed carbon fiber reinforced polybenzoxazine. This work offers a deeper understanding of how different types of fiber reinforcement affect polybenzoxazine-based FRPs and provides access to FRPs with inherently good fire, smoke and toxicity performance without the need for further flame retardant additives.


2013 ◽  
Vol 4 (4) ◽  
pp. 28-34
Author(s):  
Uwe Klaeger ◽  
Ulrich Schmucker ◽  
Veikko Galazky

Abstract Rapidly rotating systems such as centrifuges are widely used in medicine and laboratories to efficiently separate different constituents of liquids. Rotors, which hold sample containers, are an essential part of centrifuges. Since they are subjected to extreme mechanical loads, rotors are one of a centrifuge’s core safety components. Their deficits served as the point of departure for the development of a novel manufacturing technology, which is based on carbon fiber-reinforced polymers (CFRP). Its supporting structure is entirely in the loading plane, thus enabling the rotor to absorb higher centrifugal forces while requiring the same amount of material. The new design concept for the load-bearing structure includes a geodesically molded annular support member. It transmits forces better than present products and increases rigidity. In order to eliminate the known problems with obtaining the necessary manufacturing quality of hollow fiber composite bodies, the authors developed the process of centrifugal infusion. Their proposed solution is based on generating higher gravitation forces, thus effectively eliminating detrimental gas pockets and simultaneously optimizing surface quality and impregnation.


2014 ◽  
Vol 5 (4) ◽  
pp. 147-158 ◽  
Author(s):  
Eugenijus Gudonis ◽  
Edgaras Timinskas ◽  
Viktor Gribniak ◽  
Gintaris Kaklauskas ◽  
Aleksandr K. Arnautov ◽  
...  

Fiber reinforced polymers (FRPs) are considered to be a promising alternative to steel reinforcement, especially in concrete structures subjected to an aggressive environment or to the effects of electromagnetic fields. Although attempts to develop effective reinforcement have been followed, the application of FRPs remains limited by the solution to simple structural problems that mainly appear due to the absence of design codes, significant variation in the material properties of FRP composites and limited knowledge gained by engineers as regards the application aspects of FRP composites and structural mechanics of concrete elements reinforced with FRPs. To fill the latter gap, the current state-of-the-art report is dedicated to present recent achievements in FRPs applying practice to a broad engineers’ community. The report also revises the manufacturing process, material properties, the application area and design peculiarities of concrete elements reinforced with FRP composites. Along the focus on internal reinforcement, the paper overviews recent practices of applying FRP reinforced concrete (RC) elements in structural engineering. The review highlights the main problems restricting the application of FRPs in building industry and reveals the problematic issues (related to the material properties of the FRP) important for designing RC following the formulation of targets for further research.


2016 ◽  
Vol 866 ◽  
pp. 119-123 ◽  
Author(s):  
Gabriele Milani ◽  
Rafael Shehu ◽  
Marco Valente

This paper presents some preliminary results of seismic analyses performed on a masonry church located in Emilia-Romagna (Italy). The church suffered damage during the seismic events occurred in 2012 and some seismic upgrading interventions by means of Fiber Reinforced Polymers (FRPs) are proposed. The behavior of the church is investigated under horizontal loads simulating a seismic action defined in accordance with Italian Code indications. The preliminary results of the numerical analyses performed on the church in the unretrofitted configuration put in evidence both the insufficient strength of some structural elements when subjected to lateral loads and a typical failure mode of the façade. Two seismic upgrading interventions with FRP composites are simulated in order to increase the seismic performance of the church. Such interventions are carried out according to the provisions of Italian Code for FRP strengthening of existing structures. Numerical results show that a proper seismic upgrading intervention by means of FRP composites is effective to improve the seismic performance of the church.


Author(s):  
Shengqi Zhang ◽  
John S. Strenkowski

An Eulerian model is described that simulates orthogonal cutting of unidirectional fiber-reinforced polymer (FRP) composites. The continuous finite element method (FEM) and the discontinuous Galerkin (DG) method are combined to solve the governing equations. A progressive damage model is implemented to predict subsurface damage in the composite. A correction factor that accounts for fiber curvature is included in the model that incorporates the influence of fiber bending. It was found that fiber orientation has a dominant influence on both the cutting forces and subsurface damage. Good agreement was found between predicted cutting forces and subsurface damage and published experimental observations.


Sign in / Sign up

Export Citation Format

Share Document