Seismic Analysis of Friction-Damped Self-Centering Coupled-Beams for Moment-Resisting-Frames without Floor Elongation

2018 ◽  
Vol 12 (05) ◽  
pp. 1850012 ◽  
Author(s):  
Xiaogang Huang ◽  
Zhen Zhou ◽  
Qin Xie ◽  
Congming Guo ◽  
Canjun Li

The common characteristic of self-centering (SC) post-tensioned (PT) connections is the gap opening and closing at the beam-column interface, which often face the problem of deformation incompatibility with floor system and cause severe damage of floor slab. To address this drawback of PT frame expansion, an innovative friction-damped SC coupled-beams (CBs) that incorporate PT strands to provide a SC capacity along with friction devices (FDs) to dissipate energy is presented. The global mechanics of this system are briefly explained. An individual FD is tested to investigate the wear resistant properties and friction coefficients of friction materials for the energy dissipation system of SC-CBs. Detailed three-dimensional finite element models (FEMs) of a single-story single-bay frame using SC-CBs are developed with consideration of different FDs installation positions. Analytical results indicate that SC-CBs can sustain large lateral deformations without structural damage under cyclic loading. Then, simplified computational models are validated based on the solid models and applied in nonlinear dynamic analysis of a five-story MRFs using SC-CBs. The frame using SC-CBs minimizes the residual drift and displays good energy dissipation capacity under both the design basis and maximum considerable levels of seismic loading.

2021 ◽  
Vol 7 ◽  
Author(s):  
Vasiliki Terzi ◽  
Asimina Athanatopoulou

The present study aims to investigate the effects of the seismic vertical component on the pathology of Xana monument which is a typical caravanserai, constructed circa 1375–1385 and is located in the archeological site of the municipality of Trainapoulis, Greece. The monument’s plan is rectangular and the three-leaf masonry circumferential walls support a hemicylindrical dome constructed by bricks and mortar. The structure consisted of two consecutive parts: one for the travelers and one for the animals. Nowadays, the triangular roof, that covered the structure, and the first part of the monument do not exist. Xana suffers tensile cracks along the interior surface of the dome, a vertical fracture located on the northern wall and vertical tensile cracks located at the openings. A three-dimensional finite element model of the initial state of Xana is constructed. Non-linear material behavior is taken into account as well as soil-structure interaction effects. An adequate number of near-field earthquake events has been used, taking into account that they are related to significant vertical components. The structural seismic analysis is conducted for two cases. The first case refers to the action of the two horizontal-component of ground motions while the second one takes into account the three translational seismic components. The pathology estimation reveals important information concerning the structural effects due to vertical accelerations.


Author(s):  
Naibin Jiang ◽  
Feng-gang Zang ◽  
Li-min Zhang ◽  
Chuan-yong Zhang

The seismic analysis on reactor structure was performed with a new generation of finite element software. The amount of freedom degree of the model was more than twenty millions. The typical responses to operational basis earthquake excitation were given. They are larger than those with two-dimensional simplified finite element method, and the reasons of this phenomenon were analyzed. The feasibility of seismic analysis on large-scale three-dimensional finite element model under existing hardware condition was demonstrated, so some technological reserves for dynamic analysis on complicated equipments or systems in nuclear engineering are provided.


Author(s):  
Hong-Nan Li ◽  
Gang Li

Earthquake can make structures damaged and crumble. The traditional approach to seismic design has been based upon providing a combination of strength and ductility to resist the imposed loads. Thus, the level of the structure security cannot be achieved, because the disadvantage of the designing method is lack of adjusting capability subjected to an uncertain earthquake. The presence of some damping (energy dissipation) in buildings has been recognized and studied by professional researchers. Passive energy-dissipated system, as a category of vibration control methods, lead the inputting energy from earthquake to special element, thereby reducing energy-dissipating demand on primary structural members and minimizing possible structural damage. In this paper, a new idea of designing metallic damper is presented and realized through the improved dampers that are of a certain bearing forces in plane of plate and suitable energy-dissipating capability by making metallic dampers in different shapes. New types of metallic dampers are called as “dual functions” metallic damper (DFMD), because it not only provides certain stiffness in normal use for a building, but also are of good ability of the seismic energy-dissipation. The structural configuration and mechanical characteristics of the models and prototypes of the DFMDs are analyzed and experimented so as to verify the seismic performance of the dampers. Finally, the DFMDs applied to a new building in China are introduced and numerical results demonstrate the effectiveness of the DFMD.


2020 ◽  
Vol 10 (4) ◽  
pp. 1213 ◽  
Author(s):  
Álvaro Mena ◽  
Jorge Franco ◽  
Daniel Miguel ◽  
Jesús Mínguez ◽  
Ana Carla Jiménez ◽  
...  

This research develops a new low-cost energy dissipation system, capable of being implemented in residential structures in developing countries with high seismic activity, in which the current solutions are not economically viable. These residential structures are entirely made of precast concrete elements (foundations, walls, and slabs). A solution is developed that consists of a new connection between a precast foundation and a structural wall, which is capable of dissipating almost all the seismic energy, and therfore protecting the rest of the building from structural damage. To validate the solution, a testing campaign is carried out, including a first set of “pushover” tests on isolated structural walls, a second set of “pushover” tests on structural frames, and a final set of seismic tests on a real-scale three-storey building. For the first and second set of tests, ductility is analyzed in accordance with ACI 374.2R-13, while for the third one, the dynamic response to a reference earthquake is evaluated. The results reveal that the solution developed shows great ductility and no relevant damage is observed in the rest of the building, except in the low-cost energy dissipation system. Once an earthquake has finished, a precast building implemented with this low-cost energy dissipation system is capable of showing a structural performance level of “immediate occupancy” according to ACI 374.2R-13.


2011 ◽  
Vol 110-116 ◽  
pp. 328-336
Author(s):  
Samer A. M. Al-Said

Simple mathematical model that describes the lateral vibration of elastically coupled cracked cantilever beams carrying rigid disk at their tips is derived. The derived model is used to study the effect of elastic coupling, crack depth and location on the dynamic characteristics of the system. The cracked beam is presented as two beams connected with torsional spring at the crack location. Model verification is carried out using three dimensional finite element analysis using ANSYS program, the verification results showed good agreement with that obtained from the proposed model. The study reveals that the first system natural frequency is affected by the crack and the elastic coupling.


2004 ◽  
Vol 41 (1) ◽  
pp. 118-133 ◽  
Author(s):  
Bal Krishna Maheshwari ◽  
Kevin Z Truman ◽  
M Hesham El Naggar ◽  
Phillip L Gould

The effects of material nonlinearity of soil and separation at the soil–pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil–pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil–pile system.Key words: pile groups, plasticity, separation, dynamic stiffness, seismic response.


2013 ◽  
Vol 470 ◽  
pp. 938-941
Author(s):  
Yong Wang ◽  
Zhen Ting Lin ◽  
Chao Song ◽  
Bo Ya Dong

The stress, deformation and stability for the intake tower of a water release integrated structure under the normal storage water level and operational basis earthquake load case are investigated using the three dimensional finite element method. The response spectrum analysis is adopted to study the seismic response of the intake tower. Special attention is paid to the weak zones of the structure and foundation. The safety evaluation of the intake tower is performed based on the computational results.


Sign in / Sign up

Export Citation Format

Share Document