Dynamics of a discrete predator-prey model with Holling-II functional response

Author(s):  
Yuqing Liu ◽  
Xianyi Li

In this paper, we use a semidiscretization method to derive a discrete predator–prey model with Holling type II, whose continuous version is stated in [F. Wu and Y. J. Jiao, Stability and Hopf bifurcation of a predator-prey model, Bound. Value Probl. 129(2019) 1–11]. First, the existence and local stability of fixed points of the system are investigated by employing a key lemma. Then we obtain the sufficient conditions for the occurrence of the transcritical bifurcation and Neimark–Sacker bifurcation and the stability of the closed orbits bifurcated by using the Center Manifold theorem and bifurcation theory. Finally, we present numerical simulations to verify corresponding theoretical results and reveal some new dynamics.

2014 ◽  
Vol 24 (07) ◽  
pp. 1450093 ◽  
Author(s):  
Yongli Song ◽  
Yahong Peng ◽  
Xingfu Zou

In this paper, we study the persistence, stability and Hopf bifurcation in a ratio-dependent predator–prey model with diffusion and delay. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system and global stability of the boundary equilibrium. The local stability of the positive constant equilibrium and delay-induced Hopf bifurcation are investigated by analyzing the corresponding characteristic equation. We show that delay can destabilize the positive equilibrium and induce spatially homogeneous and inhomogeneous periodic solutions. By calculating the normal form on the center manifold, the formulae determining the direction and the stability of Hopf bifurcations are explicitly derived. The numerical simulations are carried out to illustrate and extend our theoretical results.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1280
Author(s):  
Liyun Lai ◽  
Zhenliang Zhu ◽  
Fengde Chen

We proposed and analyzed a predator–prey model with both the additive Allee effect and the fear effect in the prey. Firstly, we studied the existence and local stability of equilibria. Some sufficient conditions on the global stability of the positive equilibrium were established by applying the Dulac theorem. Those results indicate that some bifurcations occur. We then confirmed the occurrence of saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation. Those theoretical results were demonstrated with numerical simulations. In the bifurcation analysis, we only considered the effect of the strong Allee effect. Finally, we found that the stronger the fear effect, the smaller the density of predator species. However, the fear effect has no influence on the final density of the prey.


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Chunqing Wu ◽  
Shengming Fan ◽  
Patricia J. Y. Wong

We study two discrete predator-prey models in patchy environment, one without dispersal corridors and one with dispersal corridors. Dispersal corridors are passes that allow the migration of species from one patch to another and their existence may influence the permanence of the model. We will offer sufficient conditions to guarantee the permanence of the two predator-prey models. By comparing the two permanence criteria, we discuss the effects of dispersal corridors on the permanence of the predator-prey model. It is found that the dispersion of the prey from one patch to another is helpful to the permanence of the prey if the population growth of the prey is density dependent; however, this dispersion of the prey could be disadvantageous or advantageous to the permanence of the predator. Five numerical examples are presented to confirm the theoretical results obtained and to illustrate the effects of dispersal corridors on the permanence of the predator-prey model.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Shuang Guo ◽  
Weihua Jiang

A class of three-dimensional Gause-type predator-prey model with delay is considered. Firstly, a group of sufficient conditions for the existence of Hopf bifurcation is obtained via employing the polynomial theorem by analyzing the distribution of the roots of the associated characteristic equation. Secondly, the direction of the Hopf bifurcation and the stability of the bifurcated periodic solutions are determined by applying the normal form method and the center manifold theorem. Finally, some numerical simulations are carried out to illustrate the obtained results.


2018 ◽  
Vol 11 (07) ◽  
pp. 1850089 ◽  
Author(s):  
Saheb Pal ◽  
Sourav Kumar Sasmal ◽  
Nikhil Pal

The stability of the predator–prey model subject to the Allee effect is an interesting topic in recent times. In this paper, we investigate the impact of weak Allee effect on the stability of a discrete-time predator–prey model with Holling type-IV functional response. The mathematical features of the proposed model are analyzed with the help of equilibrium analysis, stability analysis, and bifurcation theory. We provide sufficient conditions for the flip bifurcation by considering Allee parameter as the bifurcation parameter. We observe that the model becomes stable from chaotic dynamics as the Allee parameter increases. Further, we observe bi-stability behavior of the model between only prey existence equilibrium and the coexistence equilibrium. Our analytical findings are illustrated through numerical simulations.


2019 ◽  
Vol 29 (10) ◽  
pp. 1950136 ◽  
Author(s):  
Jun Zhou

This paper deals with a diffusive predator–prey model with Bazykin functional response. The parameter regions for the stability and instability of the unique constant steady state are derived. The Turing (diffusion-driven) instability which induces spatial inhomogeneous patterns, the existence of time-periodic orbits which produce temporal inhomogeneous patterns, the existence and nonexistence of nonconstant steady state positive solutions are proved. Numerical simulations are presented to verify and illustrate the theoretical results.


2010 ◽  
Vol 143-144 ◽  
pp. 1358-1363
Author(s):  
Zhi Chao Jiang ◽  
Ming Wei Nie

In this paper, we investigate a delayed stage-structured predator-prey model with continuous harvesting on prey. Positivity and boundness of solutions and sufficient conditions of the stability of equilibria are obtained. Using and as bifurcation parameters, the existence of Hopf bifurcations at equilibria is established by analyzing the distribution of the characteristic values.


2020 ◽  
Vol 13 (03) ◽  
pp. 2050018
Author(s):  
Xiaoxia Guo ◽  
Zhiming Guo

This paper concerns with a Markov-switching predator–prey model with Allee effect for preys. The conditions under which extinction of predator and prey populations occur have been established. Sufficient conditions are also given for persistence and global attractivity in mean. In addition, stability in the distribution of the system under consideration is derived under some assumptions. Finally, numerical simulations are carried out to illustrate theoretical results.


2020 ◽  
Vol 4 (3) ◽  
pp. 35 ◽  
Author(s):  
Mehmet Yavuz ◽  
Ndolane Sene

In this work, a fractional predator-prey model with the harvesting rate is considered. Besides the existence and uniqueness of the solution to the model, local stability and global stability are experienced. A novel discretization depending on the numerical discretization of the Riemann–Liouville integral was introduced and the corresponding numerical discretization of the predator–prey fractional model was obtained. The net reproduction number R 0 was obtained for the prediction and persistence of the disease. The dynamical behavior of the equilibria was examined by using the stability criteria. Furthermore, numerical simulations of the model were performed and their graphical representations are shown to support the numerical discretizations, to visualize the effectiveness of our theoretical results and to monitor the effect of arbitrary order derivative. In our investigations, the fractional operator is understood in the Caputo sense.


Sign in / Sign up

Export Citation Format

Share Document