Bio-convective viscoelastic Casson nanofluid flow over a stretching sheet in the presence of induced magnetic field with Cattaneo–Christov double diffusion

Author(s):  
Riya Ghosh ◽  
Titilayo M. Agbaje ◽  
Sabyasachi Mondal ◽  
Sachin Shaw

Bio-convection is an important phenomenon which is described by hydrodynamic instability and pattern in suspension of biased swimming microorganisms. This hydrodynamics instability arises due to the coupling force between the motion of the micoorganisms and fluid flow. It becomes more significant when nanoparticles are immersed in the base fluid with non-Newtonian rheology. This study presents the bio-convection for a viscoelastic Casson nanofluid flow over a stretching sheet. The Cattaneo–Christov double diffusion, induced magnetic field, thermal radiation, heat generation, viscous dissipation and chemical reaction are taken into account. The boundary condition is enriched with the suction / injection and melting phenomena at the surface. Highly coupled nonlinear governing equations are simplified into a system of coupled ordinary differential equation by using proper similarity transformation. The spectral quasi-linearization method (SQLM) is used to solve the transformed governing equations numerically. Good agreement is observed with the numerical data investigated in the previous outstanding works. It is observed that the density of the motile microorganisms depends on Peclet number and bio-convective Lewis number. Bio-convection Rayleigh number increases the possibility of bio-convection in the system which results in the enhancement of temperature. It is also examined that temperature and concentration profiles increase with the Eckert number and thermophoresis parameter.

2020 ◽  
Vol 14 ◽  
Author(s):  
Hamzeh T. Alkasasbeh ◽  
Mohammed Z. Swalmeh ◽  
Hebah G. Bani Saeed ◽  
Feras M. Al Faqih ◽  
Adeeb G. Talafha

2020 ◽  
Vol 10 (8) ◽  
pp. 3001-3009 ◽  
Author(s):  
Tanzila Hayat ◽  
W. A. Khan ◽  
S. Z. Abbas ◽  
S. Nadeem ◽  
S. Ahmad

Author(s):  
Venkatesh Puneeth ◽  
Sarpabhushana Manjunatha ◽  
Bijjanal Jayanna Gireesha ◽  
Rama Subba Reddy Gorla

The induced magnetic field for three-dimensional bio-convective flow of Casson nanofluid containing gyrotactic microorganisms along a vertical stretching sheet is investigated. The movement of these microorganisms cause bioconvection and they act as bio-active mixers that help in stabilising the nanoparticles in the suspension. The two forces, Thermophoresis and Brownian motion are incorporated in the Mathematical model along with Stefan blowing. The resulting model is transformed to ordinary differential equations using similarity transformations and are solved using [Formula: see text] method. The Velocity, Induced Magnetic field, Temperature, Concentration of Nanoparticles, and Motile density profiles are interpreted graphically. It is observed that the Casson parameter decreases the flow velocity and enhances the temperature, concentration, and motile density profiles and also it is noticed that the blowing enhances the nanofluid profiles whereas, suction diminishes the nanofluid profiles. On the other hand, it is perceived that the rate of heat conduction is enhanced with Thermophoresis and Brownian motion.


2020 ◽  
Vol 9 (1) ◽  
pp. 201-222 ◽  
Author(s):  
Usha Shankar ◽  
Neminath B. Naduvinamani ◽  
Hussain Basha

AbstractPresent research article reports the magnetized impacts of Cattaneo-Christov double diffusion models on heat and mass transfer behaviour of viscous incompressible, time-dependent, two-dimensional Casson nanofluid flow through the channel with Joule heating and viscous dissipation effects numerically. The classical transport models such as Fourier and Fick’s laws of heat and mass diffusions are generalized in terms of Cattaneo-Christov double diffusion models by accounting the thermal and concentration relaxation times. The present physical problem is examined in the presence of Lorentz forces to investigate the effects of magnetic field on double diffusion process along with Joule heating. The non-Newtonian Casson nanofluid flow between two parallel plates gives the system of time-dependent, highly nonlinear, coupled partial differential equations and is solved by utilizing RK-SM and bvp4c schemes. Present results show that, the temperature and concentration distributions are fewer in case of Cattaneo-Christov heat and mass flux models when compared to the Fourier’s and Fick’s laws of heat and mass diffusions. The concentration field is a diminishing function of thermophoresis parameter and it is an increasing function of Brownian motion parameter. Finally, an excellent comparison between the present solutions and previously published results show the accuracy of the results and methods used to achieve the objective of the present work.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zulqurnain Sabir ◽  
Rizwan Akhtar ◽  
Zhu Zhiyu ◽  
Muhammad Umar ◽  
Ali Imran ◽  
...  

In this study, an attempt is made to explore the two-phase Casson nanofluid passing through a stretching sheet along a permeable surface with the effects of chemical reactions and gyrotactic microorganisms. By utilizing the strength of similarity transforms the governing PDEs are transformed into set of ODEs. The resulting equations are handled by using a proficient numerical scheme known as the shooting technique. Authenticity of numerical outcomes is established by comparing the achieved results with the MATLAB built-in solver bvp4c. The numerical outcomes for the reduced Nusselt number and Sherwood number are exhibited in the tabular form, while the variations of some crucial physical parameters on the velocity, temperature, and concentration profiles are demonstrated graphically. It is observed that Local Nusselt number rises with the enhancement in the magnetic field parameter, the porous media parameter, and the chemical reactions, while magnetic field parameter along with porous media parameter retards the velocity profile.


Sign in / Sign up

Export Citation Format

Share Document