RIDGE REGRESSION MODEL-BASED ENSEMBLE EMPIRICAL MODE DECOMPOSITION FOR ULTRASOUND CLUTTER REJECTION

2012 ◽  
Vol 04 (01n02) ◽  
pp. 1250013
Author(s):  
ZHIYUAN SHEN ◽  
NAIZHANG FENG ◽  
YI SHEN

Ensemble empirical mode decomposition (EEMD) is a noise-assisted adaptive data analysis method to solve the problem of mode mixing caused by empirical mode decomposition (EMD). It is shown that the decomposition error tends to zero, as ensemble number increases to infinity in EEMD. In this paper, a novel EEMD-based ridge regression model (REEMD) is proposed, which solves the problem of mode mixing and achieves less decomposition error compared with the EEMD. When the ensemble number is small, the weights of outliers are constraint to zero to reduce the decomposition error in REEMD and the result of REEMD is asymptotic to that of EEMD, as the ensemble number increases. The proposed REEMD is suitable for tissue clutter rejection in color flow imaging system. Simulation shows that reasonable flow-frequency estimations can be achieved by REEMD and the estimation error limits to zero, as the flow frequency increases.

2017 ◽  
Vol 09 (02) ◽  
pp. 1750004 ◽  
Author(s):  
Pawel Rzeszucinski ◽  
Michal Juraszek ◽  
James R. Ottewill

The paper introduces the concept of exploring the potential of Ensemble Empirical Mode Decomposition (EEMD) and Sparsity Measurement (SM) in enhancing the diagnostic information contained in the Time Synchronous Averaging (TSA) method used in the field of gearbox diagnostics. EEMD was created as a natural improvement of the Empirical Mode Decomposition which suffered from a so-called mode mixing problem. SM is heavily used in the field of ultrasound signal processing as a tool for assessing the degree of sparsity of a signal. A novel process of automatically finding the optimal parameters of EEMD is proposed by incorporating a Form Factor parameter, known from the field of electrical engineering. All these elements are combined and applied on a set of vibration data generated on a 2-stage gearbox under healthy and faulty conditions. The results suggest that combining these methods may increase the robustness of the condition monitoring routine, when compared to the standard TSA used alone.


2011 ◽  
Vol 121-126 ◽  
pp. 815-819 ◽  
Author(s):  
Yu Qiang Qin ◽  
Xue Ying Zhang

Ensemble empirical mode decomposition(EEMD) is a newly developed method aimed at eliminating mode mixing present in the original empirical mode decomposition (EMD). To evaluate the performance of this new method, this paper investigates the effect of two parameters pertinent to EEMD: the emotional envelop and the number of emotional ensemble trials. At the same time, the proposed technique has been utilized for four kinds of emotional(angry、happy、sad and neutral) speech signals, and compute the number of each emotional ensemble trials. We obtain an emotional envelope by transforming the IMFe of emotional speech signals, and obtain a new method of emotion recognition according to different emotional envelop and emotional ensemble trials.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohang Zhou ◽  
Deshan Shan ◽  
Qiao Li

In the ensemble empirical mode decomposition (EEMD) algorithm, different realizations of white noise are added to the original signal as dyadic filter banks to overcome the mode mixing problems of empirical mode decomposition (EMD). However, not all the components in white noise are necessary, and the superfluous components will introduce additional mode mixing problems. To address this problem, morphological filter-assisted ensemble empirical mode decomposition (MF-EEMD) was proposed in this paper. First, a new method for determining the structuring element shape and size was proposed to improve the adaptive ability of morphological filter (MF). Then, the adaptive MF was introduced into EMD to remove the superfluous white noise components to improve the decomposition results. Based on the contributions of MF in a single EMD process, the MF-EEMD was proposed by combining EEMD with MF to suppress the mode mixing problems. Finally, an analog signal and a measured signal were used to verify the feasibility of MF-EEMD. The results show that MF-EEMD significantly mitigates the mode mixing problems and achieves a higher decomposition efficiency compared to that of EEMD.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chengwu Shen ◽  
Zhiqian Wang ◽  
Chang Liu ◽  
Qinwen Li ◽  
Jianrong Li ◽  
...  

Vehicle platform vibration (VPV) directly affects the measurement accuracy of precise measuring instrument (PMI) fixed on it. In order to reduce the influences of VPV on measurement accuracy, it is necessary to perform vibration isolation between vehicle platform and PMI. Analysis of vibration characteristics is a prerequisite for vibration isolation. However, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) reveal that there is obvious mode mixing phenomenon in the collected VPV signals. In this paper, a noise stretch ensemble empirical mode decomposition (NSEEMD) method is proposed to suppress mode mixing, and the specific operation process of NSEEMD is expounded. By NSEEMD, mode mixing of the collected platform vibration data is well suppressed, and the principal component of platform vibration can be obtained.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bin Liu ◽  
Peng Zheng ◽  
Qilin Dai ◽  
Zhongli Zhou

The problems of mode mixing, mode splitting, and pseudocomponents caused by intermittence or white noise signals during empirical mode decomposition (EMD) are difficult to resolve. The partly ensemble EMD (PEEMD) method is introduced first. The PEEMD method can eliminate mode mixing via the permutation entropy (PE) of the intrinsic mode functions (IMFs). Then, bilateral permutation entropy (BPE) of the IMFs is proposed as a means to detect and eliminate mode splitting by means of the reconstructed signals in the PEEMD. Moreover, known ingredient component signals are comparatively designed to verify that the PEEMD method can effectively detect and progressively address the problem of mode splitting to some degree and generate IMFs with better performance. The microseismic signal is applied to prove, by means of spectral analysis, that this method is effective.


Penetration of distributed generation (DG) is rapidly increasing but their main issue is islanding. Advanced signal processing methods needs a renewed focus in detecting islanding. The proposed scheme is based on Ensemble Empirical Mode Decomposition (EEMD) in which Gaussian white noise is added to original signal which solves the mode mixing problem of Empirical mode decomposition (EMD) and Hilbert transform is applied to obtained Intrinsic mode functions(IMF). The proposed method reliably and accurately detects disturbances at different events


2009 ◽  
Vol 01 (02) ◽  
pp. 231-242 ◽  
Author(s):  
R. K. NIAZY ◽  
C. F. BECKMANN ◽  
J. M. BRADY ◽  
S. M. SMITH

Empirical mode decomposition (EMD) is an adaptive, data-driven algorithm that decomposes any time series into its intrinsic modes of oscillation, which can then be used in the calculation of the instantaneous phase and frequency. Ensemble EMD (EEMD), where the final EMD is estimated by averaging numerous EMD runs with the addition of noise, was an advancement introduced by Wu and Huang (2008) to try increasing the robustness of EMD and alleviate some of the common problems of EMD such as mode mixing. In this work, we test the performance of EEMD as opposed to normal EMD, with emphasis on the effect of selecting different stopping criteria and noise levels. Our results indicate that EEMD, in addition to slightly increasing the accuracy of the EMD output, substantially increases the robustness of the results and the confidence in the decomposition.


Sign in / Sign up

Export Citation Format

Share Document