INSTANTANEOUS FREQUENCY-BASED ANALYSIS AND CHARACTERIZATION OF LASER GENERATED DROPLET SEQUENCE DYNAMICS

2013 ◽  
Vol 05 (02) ◽  
pp. 1350008
Author(s):  
BLAŽ KRESE ◽  
EDVARD GOVEKAR

In the laser droplet generation process three different dripping regimes are experimentally observed in dependence on the detachment pulse power. Besides being nonlinear, the process is also inherently nonstationary. In order to consistently analyze all the dripping scenarios based on an experimental time series, time-frequency analysis by means of instantaneous frequency is used. For the calculation of instantaneous frequency, the most recent developments of the Hilbert–Huang transform are applied, i.e. ensemble empirical mode decomposition, empirical amplitude/frequency modulation decomposition, and direct quadrature. In time-frequency spectra specific patterns are associated with corresponding dripping regimes. By means of a detailed inspection of patterns, the influence of the detachment pulse power on dripping dynamics is characterized.

Author(s):  
Mykola Sysyn ◽  
Olga Nabochenko ◽  
Franziska Kluge ◽  
Vitalii Kovalchuk ◽  
Andriy Pentsak

Track-side inertial measurements on common crossings are the object of the present study. The paper deals with the problem of measurement's interpretation for the estimation of the crossing structural health. The problem is manifested by the weak relation of measured acceleration components and impact lateral distribution to the lifecycle of common crossing rolling surface. The popular signal processing and machine learning methods are explored to solve the problem. The Hilbert-Huang Transform (HHT) method is used to extract the time-frequency features of acceleration components. The method is based on Ensemble Empirical Mode Decomposition (EEMD) that is advantageous to the conventional spectral analysis methods with higher frequency resolution and managing nonstationary nonlinear signals. Linear regression and Gaussian Process Regression are used to fuse the extracted features in one structural health (SH) indicator and study its relation to the crossing lifetime. The results have shown the significant relation of the derived with GPR indicator to the lifetime.


2011 ◽  
Vol 11 (5) ◽  
pp. 1559-1569 ◽  
Author(s):  
Z. Feng

Abstract. The Shiaolin landslide occurred on 9 August 2009 after Typhoon Morakot struck Taiwan, claiming over 400 lives. The seismic signals produced by the landslide were recorded by broadband seismic stations in Taiwan. The time-frequency spectra for these signals were obtained by the Hilbert-Huang transform (HHT) and were analyzed to obtain the seismic characteristics of the landslide. Empirical mode decomposition (EMD) was applied to differentiate weak surface-wave signals from noise and to estimate the surface-wave velocities in the region. The surface-wave velocities were estimated using the fifth intrinsic mode function (IMF 5) obtained from the EMD. The spectra of the earthquake data were compared. The main frequency content of the seismic waves caused by the Shiaolin landslide were in the range of 0.5 to 1.5 Hz. This frequency range is smaller than the frequency ranges of other earthquakes. The spectral analysis of surface waves (SASW) method is suggested for characterizing the shear-wave velocities of the strata in the region.


2011 ◽  
Vol 354-355 ◽  
pp. 1406-1411
Author(s):  
Wen Hua Han ◽  
Hai Xia Ren ◽  
Xu Chen ◽  
Xiao Juan Tao

Hilbert-Huang transform (HHT) is a new time-frequency-domain analysis method, which is suitable for non-stationary and nonlinear signals. In this paper, endpoint continuation and ensemble empirical mode decomposition (EEMD) decomposition method are introduced to improve the HHT, which solve the endpoint winger and modal aliasing problem. The improved HHT (IHHT) is used for analyzing the harmonic signal and detecting the fault signal of power system. Simulation results show that IHHT is feasible and effective for harmonic analysis and fault detection.


2011 ◽  
Vol 1 (32) ◽  
pp. 25
Author(s):  
Shigeru Kato ◽  
Magnus Larson ◽  
Takumi Okabe ◽  
Shin-ichi Aoki

Turbidity data obtained by field observations off the Tenryu River mouth were analyzed using the Hilbert-Huang Transform (HHT) in order to investigate the characteristic variations in time and in the frequency domain. The Empirical Mode Decomposition (EMD) decomposed the original data into only eight intrinsic mode functions (IMFs) and a residue in the first step of the HHT. In the second step, the Hilbert transform was applied to the IMFs to calculate the Hilbert spectrum, which is the time-frequency distribution of the instantaneous frequency and energy. The changes in instantaneous frequencies showed correspondence to high turbidity events in the Hilbert spectrum. The investigation of instantaneous frequency variations can be used to understand transitions in the state of the turbidity. The comparison between the Fourier spectrum and the Hilbert spectrum integrated in time showed that the Hilbert spectrum makes it possible to detect and quantify the cycle of locally repeated events.


2019 ◽  
Vol 9 (10) ◽  
pp. 2017 ◽  
Author(s):  
Juncai Xu ◽  
Bangjun Lei

Data interpretation is the crucial scientific component that influences the inspection accuracy of ground penetrating radar (GPR). Developing algorithms for interpreting GPR data is a research focus of increasing interest. The problem of algorithms for interpreting GPR data is unresolved. To this end, this study proposes a sophisticated algorithm for interpreting GPR data with the aim of improving the inspection resolution. The algorithm is formulated by integrating variational mode decomposition (VMD) and Hilbert–Huang transform techniques. With this method, the intrinsic mode function of the GPR data is first produced using the VMD of the data, followed by obtaining the instantaneous frequency by using the Hilbert–Huang transform to analyze the intrinsic mode functions. The instantaneous frequency data can be decomposed into three frequency attributes, including frequency division section, time-frequency section, and space frequency section, which constitute a platform to gain insight into the nature of the GPR data, such that the inspected media components can be examined. The effectiveness of the proposed method on a synthetic signal from a GPR forward model was studied, with the multi-resolution performance being tested. Inspecting the media of a highroad by analyzing the GPR data, with the abnormal characteristics being designated, validated the applicability of the proposed method.


Author(s):  
Qingmi Yang

Hilbert-Huang transform (HHT) is a nonlinear non-stationary signal processing technique, which is more effective than traditional time-frequency analysis methods in complex seismic signal processing. However, this method has problems such as modal aliasing and end effect. The problem causes the accuracy of signal processing to drop. Therefore, this paper introduces the method of combining the Ensemble Empirical Mode Decomposition (EEMD) and the Normalized Hilbert transform (NHT) to extract the instantaneous properties. The specific process is as follows: First, the EEMD method is used to decompose the seismic signal to a series of Intrinsic Mode Functions (IMF), and then The IMFs is screened by using the relevant properties, and finally the NHT is performed on the IMF to obtain the instantaneous properties.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 896
Author(s):  
B. B Shankar ◽  
D. Jayadevappa

The importance of lung sound analyses is increasing day by day very rapidly. In this paper, we present a new method for analysis of two classes of lung signals namely wheezes and crackles. The procedure used in this article is based on improved Empirical Mode Decomposition (EMD) called Ensemble Empirical Mode Decomposition (EEMD) to analyze and compare continuous and discontinuous adventitious sounds with EMD. These two proposed procedures decompose the lung signals into a set of instantaneous frequency components. Function (IMF). The continuous and discontinuous adventitious sounds are present in an asthmatic patient, produces a non-stationary and nonlinear signal pattern. The empirical mode decomposition (EMD) decomposes such characteristic signals. The instantaneous frequency and spectral analysis related to dual techniques specified above are utilized by IMF to investigate and present the outcome in the time-frequency distribution to investigate the qualities of inbuilt properties of lung sound waves. The Hilbert marginal spectrum has been used to represent total amplitude and energy contribution from every frequency value. Finally, the resultant EEMD analysis is better for wheezes that solves mode mixing issues and improvisation is seen over the EMD method.   


2013 ◽  
Vol 380-384 ◽  
pp. 3522-3525 ◽  
Author(s):  
Ping Gong ◽  
Min You Chen ◽  
Li Zhang ◽  
Wen Juan Jian

In this paper, a novel method based on Hilbert-Huang transform (HHT) is presented to select optimal timefrequency patterns for single-trial motor imagery electroencephalograph (EEG). The method comprises three progressive steps: 1) employ Empirical Mode Decomposition (EMD) method to decompose EEG signal into a superposition of components or functions called IMFs, and then apply Hilbert transform to the IMFs to calculate the instantaneous frequency and instantaneous amplitude; 2) select the IMFs including the most useful frequency components 3) the optimal timefrequency patterns can be selected according to the instantaneous frequency and instantaneous amplitude of the selected IMFs. After selecting the optimal timefrequency patterns, the features extracted by different methods are classified by Fisher linear discriminator. The results showed that the proposed method could improve the classification accuracy.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Yuxin Sun ◽  
Chungang Zhuang ◽  
Zhenhua Xiong

Due to low frequency resolution for closely spaced spectral components, i.e., the instantaneous frequencies (IFs) lie within an octave or even have intersections, the Hilbert–Huang transform (HHT) fails to separate such signals and consequently generates inaccurate time–frequency distribution (TFD). In this paper, a transform operator pair assisted HHT is proposed to improve the capability of the HHT to separate signals, especially those with IF intersections. The two operators of a pair are constructed to remove the chosen component that is clearly observed in the TFD of the signal, and then recover it from intrinsic mode functions (IMFs). With this approach, the components can be clearly separated and the intersections can also be identified in the TFD. Since a priori knowledge of the transform operator is usually not available in real applications, an iterative algorithm is presented to obtain a global transform operator. The effectiveness of the proposed algorithm is demonstrated by analysis of numerical signals and a real signal collected from a cracked rotor–bearing system during the start-up process. Moreover, the proposed approach is shown to be superior to the normalized Hilbert transform (NHT) as well as the ensemble empirical mode decomposition (EEMD).


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Sign in / Sign up

Export Citation Format

Share Document