COMPOSITION DEPENDENCE OF BULK MODULUS AND BOND LENGTH OF MgxZn1-xO(x = 0.0-1.0) ALLOY SEMICONDUCTORS

2010 ◽  
Vol 03 (04) ◽  
pp. 241-244 ◽  
Author(s):  
KEYAN LI ◽  
ZHONGSHENG DING ◽  
DONGFENG XUE

For the first time, a general viewpoint of electronegativity and chemical bond in alloy semiconductors, e.g., Mg x Zn 1-x O (x = 0.0-1.0) was proposed. The variation of bulk modulus and bond length, as well as their dependence on Mg concentration x were quantitatively simulated. The bulk moduli of Mg x Zn 1-x O alloys decrease with increasing Mg concentration x. The detailed variation of bond lengths of both Mg–O and Zn–O in Mg x Zn 1-x O alloys in the whole composition range was determined, which is less than 0.007 Å. The valence state of Mg is larger than that of Zn when x = 0.0-1.0, which leads to the increase of valence state of O with increasing Mg concentration x. The current results clearly indicate that Mg x Zn 1-x O condenses in an alloy state.

1982 ◽  
Vol 37 (6) ◽  
pp. 587-593 ◽  
Author(s):  
H. Redslob ◽  
G. Steinleitner ◽  
W. Freyland

Abstract The paper reports new measurements of the electrical conductivity, thermoelectric power, magnetic susceptibility, and molar volume of liquid Cs-Sb alloys and, partly, Na-Sb and K-Sb alloys. From the temperature and composition dependence of the electronic properties it is concluded that typical semiconducting behavior similar to liquid chalgogen based alloy semiconductors exists over a wide composition range. The change in bonding for 0.25≦XSb≦0.5 is qualitatively discussed and it is found that these liquid alloys are not essentially ionic in character.


2015 ◽  
Vol 51 (56) ◽  
pp. 11248-11251 ◽  
Author(s):  
T. D. Humphries ◽  
D. A. Sheppard ◽  
C. E. Buckley

For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T–deuterium bond length and the average electronegativity of the metal countercations.


1997 ◽  
Vol 52 (7) ◽  
pp. 847-850 ◽  
Author(s):  
Joachim Pickardt ◽  
Sven Wiese

The reactions of diaza-15-crown-5 (“2.1”), and diaza-18-crown-6 (“2.2”), resp., with HgI2 in methanol afford the compounds [Hg(2.1)I][Hg2I6] (1) and [Hg(2.2)I][Hg2I6] (2), the crystal structures of which were determined. 1 consists of isolated cations [Hg(2.1)I]+ and anions [Hg2I6]2-. In the cations Hg is coordinated by one iodine atom, the two N atoms and the three O atoms of the ligand; the Hg-I distance is 262.1(3) pm, the Hg-N bond lengths are 221(2) and 238(2) pm; they are significantly shorter than the Hg-O distances, which are in the range between 262 and 271 pm. 2 consists of cations [Hg(2.2)I]+, which are bridged by the anions. In the cations of 2 Hg is coordinated by an iodine atom and by the two N atoms of the ligand, but by only three of the four O atoms. The Hg-I distance is 275.8(5) pm, the mean Hg-N bond length 234(4) pm, and the Hg-O distances vary between 285 and 304 pm. The Hg-I distance to the bridging I atom of the anion is 388.6(6) pm. The Hg-I bond lengths within the anions are slightly widened by this coordination.


1998 ◽  
Vol 53 (4) ◽  
pp. 469-475 ◽  
Author(s):  
Kazuhiko Ozutsumi ◽  
Shintaro Ohnishia ◽  
Hitoshi Ohtaki ◽  
Masaaki Tabatab

The local structure around the cobalt(II) ion in the reaction intermediate formed during the metal substitution reaction of the homodinuclear mercury(II) porphyrin (5,10,15,20-tetrakis(4- sulfonatophenyl)porphyrin; H2tpps4- ) complex with a cobalt(II) ion in an acetate buffer has been determined by the stopped-flow EXAFS method. The structure of the reactant and the product of the above reaction has also been determined by the same method. The coordination geometry around the cobalt(II) ion in the heterodinuclear intermediate, [Hg(tpps)Coll]2- , is six-coordinate octahedral with four additional water and/or acetate oxygen atoms. The Coll-N and Coll-O bond lengths in the intermediate are 212(2) and 221(1) pm, respectively. The product, [Coll(tpps)]4-, has a six-coordinate octahedral structure, the Coll-N and Coll-O bond lengths being 203(1) and 215(1) pm, respectively. The Coll-N bond length in the intermediate is ca. 9 pm longer than that in the product. The Coll-O bond length in the intermediate is also ca. 9 pm longer than that of 212(1) pm in the reactant, the cobalt(II) acetato complex, and ca. 6 pm longer than that in the product. The longer Coll-O bond in the intermediate as compared to those in the reactant and in the product appears to be responsible for the instability of the intermediate. The oxidized product, [Colll(tpps)]3-, has a six-coordinate structure with two additional Colll-O bonds. The Colll-N and Colll-O bond lengths are 189(1) and 197(2) pm, respectively, and are much shorter than those in [Coll(tpps)]4-.


1992 ◽  
Vol 45 (2) ◽  
pp. 429 ◽  
Author(s):  
AT Baker ◽  
MT Emett

The structures of [Pt(S2CN(C2H5)2)2] (1) and [Pt(S2CN(C2H4OH)2)2] (2) have been determined by single-crystal X-ray diffractometry. Compound (1) crystallizes in the tetragonal space group P42/n, a 16.4692(10),c 6.2160(6) � (Z = 4); R was 0.029 for 1012 observed reflections. Compound (2) is monoclinic, space group Pc, a 6-0663(11), b 1.1784(15), c 12.5740(21) � ,β92.569(8)� (Z = 2); R was 0.019 for 1573 observed reflections. The presence of electron-withdrawing groups in the ligands of (2) appears to have little effect on the Pt-S distances but causes an increase in the C-N bond length, with the C-N bond lengths being significantly different at the 2 σ level.


2010 ◽  
Vol 66 (3) ◽  
pp. 380-386 ◽  
Author(s):  
Frank H. Allen ◽  
Ian J. Bruno

The number of structures in the Cambridge Structural Database (CSD) has increased by an order of magnitude since the preparation of two major compilations of standard bond lengths in mid-1985. It is now of interest to examine whether this huge increase in data availability has implications for the mean bond-length values published in the late 1980s. Those compilations reported mean X—H bond lengths derived from rather sparse information and for rather few chemical environments. During the intervening years, the number of neutron studies has also increased, although only by a factor of around 2.25, permitting a new analysis of X—H bond-length distributions for (a) organic X = C, N, O, B, and (b) a variety of terminal and homometallic bridging transition metal hydrides. New mean values are reported here and are compared with earlier results. These new overall means are also complemented by an analysis of X—H distances at lower temperatures (T ≤ 140 K), which indicates the general level of librational effects in X—H systems. The study also extends the range of chemical environments for which statistically acceptable mean X—H bond lengths can be obtained, although values from individual structures are also collated to further extend the chemical range of this compilation. Updated default `neutron-normalization' distances for use in hydrogen-bond and deformation-density studies are also proposed for C—H, N—H and O—H, and the low-temperature analysis provides specific values for certain chemical environments and hybridization states of X.


1987 ◽  
Vol 42 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Roger Blachnik ◽  
Willi Buchmeier ◽  
Claudia Schneider ◽  
Ulrike Wickel

P3Se4I is formed by the reaction of molten P4Se3 and I2. P3Se4I is monoclinic, space group P21/c with the lattice parameters of a = 1130.3(3) pm, b = 654.5(2) pm, c =1420.5(4) pm, β - 117.64(2)°. d = 3.87 g cm-3 and dx = 3.82 g cm-3 for Z = 4. The structure of the molecule is derived from the structure of α-or β-P4Se3I2 by the substitution of a P−I group by a Se-atom. The P−I, P−P and Se−Se bond lengths are 249.9, 219.2 and 236.9 pm. resp. The mean P−Se bond length is 225.0 pm. The molecule is stabilized by two weak intramolecular P−Se and P−I bonds, comparable to the bonding situation in α-P4Se3I2 . The 31P NMR spectra reveal a coalescence effect, due to equilibrium between two isomeric forms of the molecules.


2007 ◽  
Vol 111 (6) ◽  
pp. 1304-1309 ◽  
Author(s):  
Siyuan Zhang ◽  
Huiling Li ◽  
Huaiyong Li ◽  
Shihong Zhou ◽  
Xueqiang Cao

Sign in / Sign up

Export Citation Format

Share Document