Preparation and properties of solid electrolyte CaxBi1.7−xW0.3O3.45−0.5x electrolyte material by sol–gel combution method

2019 ◽  
Vol 12 (05) ◽  
pp. 1951001
Author(s):  
Jie Yang ◽  
Changan Tian ◽  
Yu Wang ◽  
Junjie Meng ◽  
Dongdong Ji ◽  
...  

CaxBi[Formula: see text]W[Formula: see text]O[Formula: see text] (CBW) ([Formula: see text], 0.05, 0.10, 0.15, 0.20, 0.30) electrolyte material were synthesized by sol–gel self-combustion method. The samples were characterized by thermogravimetric-differential thermogravimetric analysis(TG-DSC), X-ray diffraction, scanning electron microscopy (SEM), porosity and electrochemical impedance spectroscopy (EIS). The results show the powders CaxBi[Formula: see text]W[Formula: see text]O[Formula: see text] (CBW) with fluorite crystal structure can be obtained after the precursor was calcined at 760∘C. When sintered at 780∘C for 2[Formula: see text]h, the compact ceramic sintered with relative density higher than 97% can be obtained. The electrochemical studies showed that CaxBi[Formula: see text]W[Formula: see text]O[Formula: see text] (CBW) have high ionic conductivity after 780∘C sintering. The sample Ca[Formula: see text]Bi[Formula: see text]W[Formula: see text]O[Formula: see text] exhibits a conductivity of 0.07978 S[Formula: see text][Formula: see text][Formula: see text]cm[Formula: see text] at 750∘C, and the activation energy is 0.845[Formula: see text]eV, which is expected to be applied to the electrolyte materials for intermediate temperature solid oxide fuel cells (SOFC).

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4702
Author(s):  
Roberto Spotorno ◽  
Marlena Ostrowska ◽  
Simona Delsante ◽  
Ulf Dahlmann ◽  
Paolo Piccardo

A commercially available glass-ceramic composition is applied on a ferritic stainless steel (FSS) substrate reproducing a type of interface present in solid oxide fuel cells (SOFCs) stacks. Electrochemical impedance spectroscopy (EIS) is used to study the electrical response of the assembly in the temperature range of 380–780 °C and during aging for 250 h at 780 °C. Post-experiment analyses, performed by means of X-ray diffraction (XRD), and along cross-sections by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, highlight the microstructural changes promoted by aging conditions over time. In particular, progressive crystallization of the glass-ceramic, high temperature corrosion of the substrate and diffusion of Fe and Cr ions from the FSS substrate into the sealant influence the electrical response of the system under investigation. The electrical measurements show an increase in conductivity to 5 × 10−6 S∙cm−1, more than one order of magnitude below the maximum recommended value.


2012 ◽  
Vol 727-728 ◽  
pp. 657-662
Author(s):  
Reinaldo Azevedo Vargas ◽  
Everton Bonturim ◽  
Marco Andreoli ◽  
Rubens Chiba ◽  
Emília Satoshi Miyamaru Seo

The (La0.60Sr0.40)(Co0.20Fe0.80)O3-δ - LSCF, (Ce0.90Gd0.10)O1.95 - CGO composites and LSCF were deposited by wet powder spraying deposition method for the purpose of investigating their potential use in Intermediate Temperature Solid Oxide Fuel Cells. The interlayers are necessary between CGO electrolytes and LSCF cathodes in order to improve the performance of these materials. LSCF particles synthesized by citrate technique were calcined at 900 °C for 4 h and, their LSCF-CGO composites and LSCF suspensions deposited on CGO substrate and, sintered in 1100 °C for 1 h, were formed pseudo-perovskite. The ceramics materials were analyzed by X-ray diffraction (XRD) and chemical composition of different half-cells layers by scanning electron microscope with energy dispersive (SEM-EDS). The results are in agreement with the literature and indicate that route studied is adequate for crystal structures formation compatible with films the 35 µm thick total for study of conductivity between the cathode and the electrolyte.


2010 ◽  
Vol 93-94 ◽  
pp. 566-569
Author(s):  
Wassayamon Singkha ◽  
Sutin Kuharuangrong

La3Ni2O7±δ and La2.9Sr0.1Ni2O7±δ Ruddlesden-Popper nickelate were synthesized via citrate gel method. The electrical property of Mn and Co dopants on Ni site in these systems was investigated as possible cathode for solid oxide fuel cells. The result of X-ray diffraction shows the presence of La2NiO4 in La3Ni2-xMxO7±δ and La2.9Sr0.1Ni2-xMxO7±δ (M = Mn or Co) as M content increases from x = 0.1 for Mn and x = 0.2 for Co. With further increase of Mn dopant (x ≥ 0.4), LaMnO3 and La2O3 appear with La2NiO4. The grain size of sintered sample decreases as Mn content increases. However, it slightly decreases with increasing Co content. The TEC value increases with Co content. The DC four-point measurement shows a decrease in the conductivity as Co content increases for both La3Ni2-xCoxO7±δ and La2.9Sr0.1Ni2-xCoxO7±δ systems.


2014 ◽  
Vol 775-776 ◽  
pp. 52-56
Author(s):  
Reinaldo Azevedo Vargas ◽  
Everton Bonturim ◽  
Marco Andreoli ◽  
Rubens Chiba ◽  
Emília Satoshi Miyamaru Seo

The (La0.60Sr0.40)(Co0.20Fe0.80)O3-δ - LSCF, (Ce0.90Gd0.10)O1.95 - CGO composites and LSCF were deposited by wet powder spraying deposition method for the purpose of investigating their potential use in Intermediate Temperature Solid Oxide Fuel Cells. The interlayers are necessary between CGO electrolytes and LSCF cathodes in order to improve the performance of these materials. LSCF powders synthesized by citrate technique were calcined at 900 °C for 4 h and, their LSCFCGO composites and LSCF suspensions deposited on CGO substrate and, sintered in 1100 °C for 1 h, were formed pseudo-perovskite. The ceramics materials were analyzed by X-ray diffraction (XRD) and chemical composition of different half-cells layers by scanning electron microscope with energy dispersive (SEM-EDS). The results are in agreement with the literature and indicate that route studied is adequate for crystal structures formation compatible with films the 35 μm thick total for study of conductivity between the cathode and the electrolyte.


2013 ◽  
Vol 207 ◽  
pp. 55-60 ◽  
Author(s):  
Marita Kerstan ◽  
Christian Thieme ◽  
Matthias Grosch ◽  
Matthias Müller ◽  
Christian Rüssel

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1824 ◽  
Author(s):  
Yumin Cui ◽  
Ruijuan Shi ◽  
Junlong Liu ◽  
Hongtao Wang ◽  
Huiquan Li

Yb3+ and Y3+ double doped ZrO2 (8YSZ+4Yb2O3) samples were synthesized by a solid state reaction method. Moreover, 8YSZ+4Yb2O3-NaCl/KCl composites were also successfully produced at different temperatures. The 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 °C), and 8YSZ+4Yb2O3-NaCl/KCl (1000 °C) samples were characterized by x–ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that a dense composite electrolyte was formed at a low temperature of 800 °C. The maximum conductivities of 4.7 × 10−2 S·cm−1, 6.1 × 10−1 S·cm−1, and 3.8 × 10−1 S·cm−1 were achieved for the 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 °C), and 8YSZ+4Yb2O3-NaCl/KCl (1000 °C) samples at 700 °C, respectively. The logσ~log (pO2) plot result showed that the 8YSZ+4Yb2O3-NaCl/KCl (800 °C) composite electrolyte is a virtually pure ionic conductor. An excellent performance of the 8YSZ+4Yb2O3-NaCl/KCl (800 °C) composite was obtained with a maximum power density of 364 mW·cm−2 at 700 °C.


2011 ◽  
Vol 233-235 ◽  
pp. 2419-2423
Author(s):  
Jin Xia Wang ◽  
Jia Wen Jian ◽  
Yuan Yuan Gu

In this paper we used sol-gel method for synthesizing Y3+-doped BaCeO3 solid electrolyte BaCe1-xYxO3-δ(x=0.10, 0.15, 0.20, 0.25, 0.30). The samples crystallized in a single perovskite phase by X-ray diffraction analysis after sintering at 1450°C in air for 10h; Raman spectrum measurements indicated that the increasing of Y3+ doped content increased the crystal symmetry and increased the oxygen vacancy content for the samples, all Y3+ ions were doped into the Ce-sites; The electric conductivities of the samples increased with Y content and reach a maximum at x=0.25, then decreased. The relationship between proton conductivity and Y dopant was closely related with oxygen vacancy content, crystal symmetry and the forming of defect association.


2013 ◽  
Vol 448-453 ◽  
pp. 2950-2958
Author(s):  
Qing Wen Gu ◽  
Yong Hong Chen ◽  
Dong Tian ◽  
Xiao Yong Lu ◽  
Yan Zhi Ding ◽  
...  

(Pr0.5Nd0.5)0.7Ca0.3Cr1-xCuxO3–δ(PNCCCx x=0, 0.5, 0.1, 0.15,0.2 ) interconnect material and electrolyte powders of Sm0.2Ce0.8O1.9 (SDC) were synthesized by citric acid nitrates self-propagating combustion methodThe phase and microstructure of the sintering samples were investigated by X-ray diffraction and scanning electron microscope, respectively. The electrical conductivity of the samples were measured by four-probe technique. The results indicated that there is no new-phase were detected after co-firing between Cu-doping PNCC and SDC at 1350°C for 5 h. In air or H2 atmosphere, the conductivity of the sintering ceramics increasing with temperature, as well as the Cu-doped contents. At 800°C, the conductivity for PNCCC0.05 reached 37.54S/cm in air, and the maximum of PNCCC/SDC reached 44.52 S/cm in air 30.68 S/cm in H2, respectively. The average thermal expansion coefficient of the series ceramics is between10.4×10-6 K-1 to 10.8×10-6K-1 at the RT-1000°C, which is close to that of the SDC electrolyte. Our results indicate that the PNCCC compounds is a very promising interconnect material for intermediate solid oxide fuel cells.


Sign in / Sign up

Export Citation Format

Share Document