Pre-lithiated Li(NixMnyCoz)O2 nanoparticles with a double-layer lithium structure

2020 ◽  
Vol 13 (04) ◽  
pp. 2050020
Author(s):  
Suihan Cui ◽  
Qingdong Ruan ◽  
Cuiqing Jiang ◽  
Tijun Li ◽  
Zheng Jin ◽  
...  

Li(NixMnyCoz)O2 cathode materials (NMC) have advantages such as the good Li ion diffusivity, stable reversible capacity, and environmental compatibility in spite of a low actual capacity. Although a double-layer lithium structure can be generated by pre-lithiation, the thickness is very small and the capacity improvement is limited. In this work, a series of Li([Formula: see text][Formula: see text][Formula: see text])O2 nanoparticles are prepared by the sol–gel method and centrifugation and the pre-lithiation process are monitored by transmission electron microscope (TEM). A double lithium structure of about 10 nanometers thick is produced on the NMC materials with different sizes. With decreasing NMC particle size, the proportion of the double-layer lithium structure increases and reaches 48% for a particle diameter of 100[Formula: see text]nm. The results reveal a viable means to improve the capacity of NMC materials in charging and discharging.

Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2010 ◽  
Vol 177 ◽  
pp. 32-36 ◽  
Author(s):  
An Rong Wang ◽  
Jian Li ◽  
Qing Mei Zhang ◽  
Hua Miao

Weak magnetic ZnFe2O4 nanoparticles were prepared by coprecipitation and treated with different concentrations of Fe(NO3)3 solution. Untreated and treated particles were studied using a vibrating sample magnetometer, transmission electron microscope, by X-ray diffraction, X-ray energy dispersive spectroscopy and X photoelectron spectroscopy. The results showed that, after treatment, the ZnFe2O4/γ-Fe2O3 forms disphase nanoparticles, with enlarged size, enhanced magnetic properties and with a surface parceled with Fe(NO3)3. The size of the particles and their magnetic properties are related to the concentration of the treatment solution. The particle size and magnetic properties could be controlled by controlling the concentration of treating solution, therefore nanoparticles can be more widely used.


2016 ◽  
Vol 10 (1) ◽  
pp. 35-40
Author(s):  
Yunasfi . ◽  
P. Purwanto ◽  
Mashadi .

Utilization of HEM (high energy milling) technique for growth of CNT (carbon nanotube) from graphite powders by using Ni as catalyst was carried out. Milling process performed on a mixture of graphite powder and nickel powder (Ni-C powders) with the ratio of weight percent of 98%: 2%, with a variation of milling time between 25 up to 75 hours. Characterization using PSA (Powder Size Analyzer), SAA (Surface Area Analyzer), TEM (Transmission Electron Microscope) and Raman Spectroscopy performed to obtain information about particle size, surface area, morphology and the structure bonding of the milled powder respectively. The analysis results of Ni-C powders using PSA and SAA showed the smallest particle size and biggest surface area obtained after milling process for 50 hours, i.e. 80 nm and 705 m2/g, respectively. TEM observations revealed formation of flat fibers which quantity increased with increasing milling time. This flattened fiber behave as an initiator for the growth of CNTs. Ni-C powder milling for 50 hours results more clearly show the growth of CNTs. Analysis by Raman Spectroscopy showed two bands at 1582 cm−1 as a peak of G band and at 1350 cm-1 as a peak of D band. These spectra are typical for sp2 structure. The position of G band peak is close to 1600 cm-1 as the evidence of a change to nano-crystalline graphite. The highest intensity of D band shown in the milling process for 50 hours, which indicates that this milling time produces more graphite-like structure compared to other conditions, and is predicted good for growing CNTs. AbstrakPemanfaatan teknik HEM (High Energy Milling) untuk penumbuhan CNT (carbon nanotube) dari serbuk grafit dengan menggunakan Ni sebagai katalis. Proses milling dilakukan terhadap campuran serbuk grafit dan serbuk nikel (serbuk Ni-C) dengan perbandingan berat 98% : 2%, dengan variasi waktu milling antara 25-75 jam. Karakterisasi menggunakan fasilitas PSA (Particle Size Analyzer), SAA (Surface Area Analyzer), dan TEM (Transmission Electron Microscope) serta Raman Spektroscopy yang masing-masingnya untuk mendapatkan informasi tentang ukuran partikel, luas permukaan dan morfologi serta struktur ikatan serbuk hasil milling. Hasil analisis serbuk Ni-C dengan PSA dan SAA menunjukkan ukuran partikel paling kecil dan luas permukaan paling besar diperoleh setelah proses milling selama 50 jam, masing-masing 80 nm dan 705 m2/g. Pengamatan TEM menunjukkan serbuk-serbuk berbentuk serat pipih dengan kuantitas yang meningkat dengan bertambahnya waktu milling. Serat pipih ini perupakan cikal bakal penumbuhan CNT. Serbuk Ni-C hasil milling menunjukkan penumbuhan CNT terlihat lebih jelas setelah milling selama 50 jam. Hasil analisis dengan Raman Spectroscopy memperlihatkan puncak G band pada bilangan gelombang 1582 cm−1 yang merupakan spektrum untuk struktur sp2 dari grafit dan puncak D band pada bilangan gelombang 1350 cm-1 yang mungkin merupakan deformasi struktur grafit. Posisi puncak G band mendekati 1600 cm-1 menjadi bukti perubahan ke grafit nano kristal. Intensitas D band tertinggi ditunjukkan oleh sistem komposit Ni-C hasil proses milling selama 50 jam dan hal ini sebagai indikasi bahwa proses milling selama 50 jam terhadap sistem komposit Ni-C lebih berstruktur mirip grafit (graphitic-like material) dibanding kondisi lainnya dan diprediksi bagus untuk menumbuhkan CNT. Dengan demikian, waktu milling yang optimal untuk penumbuhan CNT dari serbuk grafit dengan menggunakan Ni sebagai katalis adalah adalah 50 jam.  


2011 ◽  
Vol 295-297 ◽  
pp. 840-843
Author(s):  
Jian Hua Du ◽  
Yuan Yuan Li ◽  
Xiao Hui Zheng

Copper coated nano-SiO2 composite particles were prepared by mechanical milling technology. The effects of milling time on morphology, granularity, component and microstructure of the composite particles were characterized by scanning electronic microscope, laser particle size analyzer, energy depressives spectrometer and transmission electron microscope, respectively. Results showed that dendrite composite particles change to the flaky, and then to spherical ones with the milling time increasing. The particle size decreases firstly and then increases with the milling time increasing. The n-SiO2 particles disperse more homogeneously in the composite particles with the milling time increasing.


1999 ◽  
Vol 580 ◽  
Author(s):  
T. Kogure ◽  
T. Umezawa ◽  
Y. Kotani ◽  
A. Matsuda ◽  
M. Tatsumisago ◽  
...  

AbstractThe crystallization of TiO2 in monolithic SiO2-TiO2 (SiO2>TiO2) gels by annealing has been investigated. The temperatures of the crystallization of TiO2 to anatase and anatase-to-rutile phase transition were considerably raised with the addition of SiO2. It is supposed that the anatase-torutile phase transition is primarily controlled by the grain size of the crystals. TiO2(B), one of the TiO2 polymorphs, was formed as one of the first crystalline phase in SiO2-TiO2 gels at 800-900°C. Transmission electron microscope observations revealed that TiO2(B) nanocrystallites with a size of 5-10 nm were dispersed in amorphous SiO2 matrix. TiO2(B) nanocrystallites did not grow larger but transformed to anatase at higher temperatures. It is supposed that the nucleation and stability of TiO2(B) are enhanced with the presence of surrounding SiO2, presumably by a low interfacial energy.


Sign in / Sign up

Export Citation Format

Share Document