Transitivity of trees

Author(s):  
Libin Chacko Samuel ◽  
Mayamma Joseph

For a graph [Formula: see text], a partition [Formula: see text] of the vertex set [Formula: see text] is a transitive partition if [Formula: see text] dominates [Formula: see text] whenever [Formula: see text]. The transitivity [Formula: see text] of a graph [Formula: see text] is the maximum order of a transitive partition of [Formula: see text]. For any positive integer [Formula: see text], we characterize the smallest tree with transitivity [Formula: see text] and obtain an algorithm to determine the transitivity of any tree of finite order.

Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 126
Author(s):  
Hong Li ◽  
Hongyan Xu

This article is to investigate the existence of entire solutions of several quadratic trinomial difference equations f(z+c)2+2αf(z)f(z+c)+f(z)2=eg(z), and the partial differential difference equations f(z+c)2+2αf(z+c)∂f(z)∂z1+∂f(z)∂z12=eg(z),f(z+c)2+2αf(z+c)∂f(z)∂z1+∂f(z)∂z2+∂f(z)∂z1+∂f(z)∂z22=eg(z). We establish some theorems about the forms of the finite order transcendental entire solutions of these functional equations. We also list a series of examples to explain the existence of the finite order transcendental entire solutions of such equations. Meantime, some examples show that there exists a very significant difference with the previous literature on the growth order of the finite order transcendental entire solutions. Our results show that some functional equations can admit the transcendental entire solutions with any positive integer order. These results make a few improvements of the previous theorems given by Xu and Cao, Liu and Yang.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


2014 ◽  
Vol 13 (05) ◽  
pp. 1350162 ◽  
Author(s):  
YANGJIANG WEI ◽  
GAOHUA TANG ◽  
JIZHU NAN

For a finite commutative ring R and a positive integer k ≥ 2, we construct an iteration digraph G(R, k) whose vertex set is R and for which there is a directed edge from a ∈ R to b ∈ R if b = ak. In this paper, we investigate the iteration digraphs G(𝔽prCn, k) of 𝔽prCn, the group ring of a cyclic group Cn over a finite field 𝔽pr. We study the cycle structure of G(𝔽prCn, k), and explore the symmetric digraphs. Finally, we obtain necessary and sufficient conditions on 𝔽prCn and k such that G(𝔽prCn, k) is semiregular.


2021 ◽  
Vol 6 (10) ◽  
pp. 11508-11515
Author(s):  
Zhiqun Li ◽  
◽  
Huadong Su

<abstract><p>Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.</p></abstract>


1974 ◽  
Vol 26 (4) ◽  
pp. 806-819
Author(s):  
Kenneth W. Lebensold

In this paper, we are concerned with the following problem: Let S be a finite set and Sm* ⊂ 2S a collection of subsets of S each of whose members has m elements (m a positive integer). Let f be a real-valued function on S and, for p ∊ Sm*, define f(P) as Σs∊pf (s). We seek the minimum (or maximum) of the function f on the set Sm*.The Traveling Salesman Problem is to find the cheapest polygonal path through a given set of vertices, given the cost of getting from any vertex to any other. It is easily seen that the Traveling Salesman Problem is a special case of this system, where S is the set of all edges joining pairs of points in the vertex set, Sm* is the set of polygons, each polygon has m elements (m = no. of points in the vertex set = no. of edges per polygon), and f is the cost function.


2013 ◽  
Vol 20 (03) ◽  
pp. 495-506 ◽  
Author(s):  
Jin-Xin Zhou ◽  
Mohsen Ghasemi

A Cayley graph Cay (G,S) on a group G with respect to a Cayley subset S is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay (G,S). For a positive integer n, let Γn be a graph with vertex set {xi,yi|i ∈ ℤ2n} and edge set {{xi,xi+1}, {yi,yi+1}, {x2i,y2i+1}, {y2i,x2i+1}|i ∈ ℤ2n}. In this paper, it is shown that Γn is a Cayley graph and its full automorphism group is isomorphic to [Formula: see text] for n=2, and to [Formula: see text] for n > 2. Furthermore, we determine all pairs of G and S such that Γn= Cay (G,S) is non-normal for G. Using this, all connected cubic non-normal Cayley graphs of order 8p are constructed explicitly for each prime p.


2015 ◽  
Vol 58 (2) ◽  
pp. 320-333
Author(s):  
Aurora Llamas ◽  
Josá Martínez–Bernal

AbstractThe cover product of disjoint graphs G and H with fixed vertex covers C(G) and C(H), is the graphwith vertex set V(G) ∪ V(H) and edge setWe describe the graded Betti numbers of GeH in terms of those of. As applications we obtain: (i) For any positive integer k there exists a connected bipartite graph G such that reg R/I(G) = μS(G) + k, where, I(G) denotes the edge ideal of G, reg R/I(G) is the Castelnuovo–Mumford regularity of R/I(G) and μS(G) is the induced or strong matching number of G; (ii)The graded Betti numbers of the complement of a tree depends only upon its number of vertices; (iii)The h-vector of R/I(G e H) is described in terms of the h-vectors of R/I(G) and R/I(H). Furthermore, in a diòerent direction, we give a recursive formula for the graded Betti numbers of chordal bipartite graphs.


2017 ◽  
Vol 28 (06) ◽  
pp. 1750034 ◽  
Author(s):  
Motoo Tange

We show that for any positive integer [Formula: see text], there exist pairs of compact, contractible, Stein 4-manifolds and order [Formula: see text] self-diffeomorphisms of the boundaries that do not extend to the full manifolds. Each boundary of the Stein 4-manifolds is a cyclic branched cover along a slice knot embedded in the boundary of a contractible 4-manifold. Each pair is called a finite order cork, we give a method producing examples of many finite order corks, which are possibly not a Stein manifold. The example of the Stein cork gives a diffeomorphism generating [Formula: see text] homotopic but non-isotopic Stein fillable contact structures for an arbitrary positive integer [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document