Finite-time convergence of an nth nonlinear system with unmatched disturbance and its application in integrated guidance and control system

Author(s):  
Cong Zhang

The finite-time convergence problem of an [Formula: see text]th nonlinear system with unmatched disturbance is primarily studied in this paper. During the recursive procedure, a new finite-time controller is designed and proven by adding a sign function and a power integrator. Meanwhile, a [Formula: see text] positive definite and proper Lyapunov function, which satisfies the finite-time Lyapunov stability law, is designed. Finally, the designed finite-time controller is applied to some examples and an application of integrated guidance and control system to test and verify its advantage and practicability.

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Zhenhua Fu ◽  
Kuanqiao Zhang ◽  
Qintao Gan ◽  
Suochang Yang

Aiming at the problem of impact angle constraint and input saturation, an integrated guidance and control (IGC) algorithm with impact angle constraint and input saturation is proposed. A three-channel independent design model of missile IGC with impact angle constraint is established, and an extended state observer with fast finite-time convergence is designed to estimate and compensate model errors and coupling relationship between channels. Based on the nonsingular terminal sliding mode control and backstepping control, the IGC three-channel independent design is completed. Nussbaum function and an auxiliary system are introduced to deal with the input saturation. The Lyapunov function is constructed to prove the finite-time convergence of the IGC algorithm. The missile six-degree-of-freedom simulation results show the effectiveness and superiority of the IGC algorithm.


Author(s):  
Chong Zhenyu ◽  
Guo Jianguo ◽  
Zhao Bin ◽  
Guo Zongyi ◽  
Lu Xiaodong

A finite-time integrated guidance and control (IGC) method is proposed in this study for hypersonic vehicles. The IGC dynamic model is initially built by combining the 3D relative kinematics and dynamics equations. Then, by introducing the adaptive control technology and the backstepping approach, an IGC scheme with adaptive parameters is presented to guarantee the finite-time stability of a closed-loop control system on the basis of Lyapunov stability theory. Nonlinear simulation results demonstrate the effectiveness and robustness of the proposed IGC method for hypersonic vehicles compared with other robust IGC methods.


Author(s):  
Guanjie Hu ◽  
Jianguo Guo ◽  
Jun Zhou

An integrated guidance and control method is investigated for interceptors with impact angle constraint against a high-speed maneuvering target. Firstly, a new control-oriented model with impact angle constraint of the integrated guidance and control system is built in the pitch plane by combining the engagement kinematics and missile dynamics model between the interceptor and target. Secondly, the flight path angle of the target is estimated by extended Kalman filter in order to transform the terminal impact angle constraint into the terminal line-of-sight angle constraint. Thirdly, a nonlinear adaptive sliding mode control law of the integrated guidance and control system is designed in order to directly obtain the rudder deflection command, which eliminates time delay caused by the traditional backstepping control method. Then the Lyapunov stability theory is used to prove the stability of the whole closed-loop integrated guidance and control system. Finally, the simulation results confirm that the integrated guidance and control method proposed in this paper can effectively improve the interception performance of the interceptor to a high-speed maneuvering target.


2017 ◽  
Vol 89 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Seyed Hamed Seyedipour ◽  
Mohsen Fathi Jegarkandi ◽  
Saeed Shamaghdari

Purpose The purpose of this paper is to design an adaptive nonlinear controller for a nonlinear system of integrated guidance and control. Design/methodology/approach A nonlinear integrated guidance and control approach is applied to a homing, tail-controlled air vehicle. Adaptive backstepping controller technique is used to deal with the problem, and the Lyapanov theory is used in the stability analysis of the nonlinear system. A nonlinear model of normal force coefficient is obtained from an existing nonlinear model of lift coefficient which was validated by open loop response. The simulation was performed in the pitch plane to prove the benefits of the proposed scheme; however, it can be readily extended to all the three axes. Findings Monte Carlo simulations indicate that using nonlinear adaptive backstepping formulation meaningfully improves the performance of the system, while it ensures stability of a nonlinear system. Practical implications The proposed method could be used to obtain better performance of hit to kill accuracy without the expense of control effort. Originality/value A nonlinear adaptive backstepping controller for nonlinear aerodynamic air vehicle is designed and guaranteed to be stable which is a novel-based approach to the integrated guidance and control. This method makes noticeable performance improvement, and it can be used with hit to kill accuracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shengjiang Yang ◽  
Jianguo Guo ◽  
Jun Zhou

A new integrated guidance and control (IGC) law is investigated for a homing missile with an impact angle against a ground target. Firstly, a control-oriented model with impact angle error of the IGC system in the pitch plane is formulated by linear coordinate transformation according to the motion kinematics and missile dynamics model. Secondly, an IGC law is proposed to satisfy the impact angle constraint and to improve the rapidity of the guidance and control system by combining the sliding mode control method and nonlinear extended disturbance observer technique. Thirdly, stability of the closed-loop guidance and control system is proven based on the Lyapunov stability theory, and the relationship between the accuracy of the impact angle and the estimate errors of nonlinear disturbances is derived from stability of the sliding mode. Finally, simulation results confirm that the proposed IGC law can improve the performance of the missile guidance and control system against a ground target.


Sign in / Sign up

Export Citation Format

Share Document