scholarly journals ENERGY INVESTMENTS UNDER CLIMATE POLICY: A COMPARISON OF GLOBAL MODELS

2013 ◽  
Vol 04 (04) ◽  
pp. 1340010 ◽  
Author(s):  
DAVID McCOLLUM ◽  
YU NAGAI ◽  
KEYWAN RIAHI ◽  
GIACOMO MARANGONI ◽  
KATHERINE CALVIN ◽  
...  

The levels of investment needed to mobilize an energy system transformation and mitigate climate change are not known with certainty. This paper aims to inform the ongoing dialogue and in so doing to guide public policy and strategic corporate decision making. Within the framework of the LIMITS integrated assessment model comparison exercise, we analyze a multi-IAM ensemble of long-term energy and greenhouse gas emissions scenarios. Our study provides insight into several critical but uncertain areas related to the future investment environment, for example in terms of where capital expenditures may need to flow regionally, into which sectors they might be concentrated, and what policies could be helpful in spurring these financial resources. We find that stringent climate policies consistent with a 2°C climate change target would require a considerable upscaling of investments into low-carbon energy and energy efficiency, reaching approximately $45 trillion (range: $30–$75 trillion) cumulative between 2010 and 2050, or about $1.1 trillion annually. This represents an increase of some $30 trillion ($10–$55 trillion), or $0.8 trillion per year, beyond what investments might otherwise be in a reference scenario that assumes the continuation of present and planned emissions-reducing policies throughout the world. In other words, a substantial "clean-energy investment gap" of some $800 billion/yr exists — notably on the same order of magnitude as present-day subsidies for fossil energy and electricity worldwide ($523 billion). Unless the gap is filled rather quickly, the 2°C target could potentially become out of reach.

2021 ◽  
Vol 228 ◽  
pp. 01004
Author(s):  
Jianchao Hou ◽  
Jinhua Jian ◽  
Pingkuo Liu

With the aggravation of environmental pollution and the overuse of fossil energy, a sustainable transition to using the low-carbon and clean energy is perceived to be an inevitable trend. The Beijing-Tianjin-Hebei, the Yangtze River Delta and the Pearl River Delta are the three most important economic circles in China. One purpose of energy transition in those Three Urban Agglomerations is to enable the energy system to have a higher share of clean energy. This paper introduces the current situation in terms of energy endowment, production and consumption in the three urban agglomerations, discusses the policy environment from the aspects of development planning, supporting mechanism and policy tools. We further analyse the barriers of the energy transition in the three urban agglomerations by using Institution-Economy-Technology-Behaviour (IETB) conceptual model. Through this research, we know that reducing the carbon emissions is a priority in energy transition and increasing the utilization of renewable energy has become the consensus in the three urban agglomerations. In addition, reasonable energy development policies can impel the energy investment and the technology innovation to accelerate energy transition. Moreover, in the designated “highly polluting” industry sectors, energy supply enterprises and energy-consuming enterprises establish green-development incentive mechanisms and adopt technological innovation in order to promote energy transition.


2013 ◽  
Vol 04 (04) ◽  
pp. 1340013 ◽  
Author(s):  
B. C. C. VAN DER ZWAAN ◽  
H. RÖSLER ◽  
T. KOBER ◽  
T. ABOUMAHBOUB ◽  
K. V. CALVIN ◽  
...  

We investigate the long-term global energy technology diffusion patterns required to reach a stringent climate change target with a maximum average atmospheric temperature increase of 2°C. If the anthropogenic temperature increase is to be limited to 2°C, total CO 2 emissions have to be reduced massively, so as to reach substantial negative values during the second half of the century. Particularly power sector CO 2 emissions should become negative from around 2050 onwards according to most models used for this analysis in order to compensate for GHG emissions in other sectors where abatement is more costly. The annual additional capacity deployment intensity (expressed in GW/yr) for solar and wind energy until 2030 needs to be around that recently observed for coal-based power plants, and will have to be several times higher in the period 2030–2050. Relatively high agreement exists across models in terms of the aggregated low-carbon energy system cost requirements on the supply side until 2050, which amount to about 50 trillion US$.


2020 ◽  
Vol 11 (03) ◽  
pp. 2041001
Author(s):  
CAN WANG ◽  
HAI HUANG ◽  
WENJIA CAI ◽  
MENGZHEN ZHAO ◽  
JIN LI ◽  
...  

An energy supply dominated by the use of fossil fuels causes both climate change and air pollution, which have negative impacts on human capital via both health and productivity. In addition, different people are affected differently because of factors such as age, gender and education level. To enhance the understanding of the benefits of low carbon transition from the labor supply perspective and help to identify strategies of collaborative control for CO2 and local air pollutants in China, an integrated assessment model linking the air quality module and the health impact module with a disaggregated labor sector computable general equilibrium (CGE) economic system is developed and applied in this study. Results show some key findings. First, renewable energy development and carbon capture and storage (CCS) technologies will contribute significantly to GDP in terms of their impact on air quality improvement by 0.99% and 0.54%, respectively, in 2050. Second, due to differences in labor composition, air pollution has, and will continue to have, the greatest impact on sectors with a higher proportion of male and lower-educated workers — such as the coal sector, and it will have the least impact on sectors with a higher proportion of female and higher-educated workers — such as the public administration sector. Third, the different impacts of sector output will increase economic inequality. Highlights • The economic impact of climate change and air pollution is assessed. • A CGE model with disaggregated labor sectors is developed. • The secondary industry is most affected by pollution from a health perspective. • Low-income groups suffer the largest loss of income due to pollution. • A low carbon policy will improve air quality and economic equity.


2016 ◽  
Vol 07 (04) ◽  
pp. 1650011
Author(s):  
ZILI YANG

Climate damage and greenhouse gas (GHG) mitigation cost plays important roles in a region’s willingness and incentives to join the global climate coalition. Negotiation of climate treaty can be modeled as a cooperative bargaining game of externality provision. The core of this game is a good representation of incentives of the participants. In this paper, we examine the relationship between the shocks of mitigation cost/climate damage and the shifts of the core of cooperative bargaining game of climate negotiation within the framework of RICE [Nordhaus and Yang, 1996. A regional dynamic general equilibrium model of alternative climate change strategies. American Economic Review, 86, 741–765], a widely used integrated assessment model (IAM) of climate change. Constructing a method that maps the core allocations onto a convex hull on the simplex of social welfare weights, we describe the scope of the core in simple metrics and capture the shifts of the core representation on the simplex in response to the shocks of mitigation cost and climate damage. A series of simulations are conducted in RICE to demonstrate the usefulness of the approach explored here. In addition, policy implications of methodological results are indicated.


2020 ◽  
Author(s):  
Jonathan Doelman ◽  
Tom Kram ◽  
Benjamin Bodirsky ◽  
Isabelle Weindle ◽  
Elke Stehfest

<p>The human population has substantially grown and become wealthier over the last decades. These developments have led to major increases in the use of key natural resources such as food, energy and water causing increased pressure on the environment throughout the world. As these trends are projected to continue into the foreseeable future, a crucial question is how the provision of resources as well as the quality of the environment can be managed sustainably.</p><p>Environmental quality and resource provision are intricately linked. For example, food production depends on availability of water, land suitable for agriculture, and favourable climatic circumstances. In turn, food production causes climate change due to greenhouse gas emissions, and affects biodiversity through conversion of natural vegetation to agriculture and through the effects of excessive fertilizer and use of pesticides. There are many examples of the complex interlinkages between different production systems and environmental issues. To handle this complexity the nexus concept has been introduced which recognizes that different sectors are inherently interconnected and must be investigated in an integrated, holistic manner.</p><p>Until now, the nexus literature predominantly exists of local studies or qualitative descriptions. This study present the first qualitative, multi-model nexus study at the global scale, based on scenarios simultaneously developed with the MAgPIE land use model and the IMAGE integrated assessment model. The goal is to quantify synergies and trade-offs between different sectors of the water-land-energy-food-climate nexus in the context of sustainable development goals (SDGs). Each scenario is designed to substantially improve one of the nexus sectors water, land, energy, food or climate. A number of indicators that capture important aspects of both the nexus sectors and related SDGs is selected to assess whether these scenarios provide synergies or trade-offs with other nexus sectors, and to quantify the effects. Additionally a scenario is developed that aims to optimize policy action across nexus sectors providing an example of a holistic approach that achieves multiple sustainable development goals.</p><p>The results of this study highlight many synergies and trade-offs. For example, an important trade-off exists between climate change policy and food security targets: large-scale implementation of bio-energy and afforestation to achieve stringent climate targets negatively impacts food security. An interesting synergy exists between the food, water and climate sectors: promoting healthy diets reduces water use, improves water quality and increases the uptake of carbon by forests.</p>


Author(s):  
Nick Jelley

‘Why do we need renewables?’ describes the dangers of fossil fuels and explains the importance of renewable energy as an alternative. It shows that the use of fossil fuels causes global warming and climate change, leading to widespread concern, and also to a growing realization of the harm caused by the air pollution from coal burning and from internal combustion engines in cars and lorries. These threats are causing a switch away from fossil fuels to renewables that is gaining impetus from the growing awareness of the increased intensity and frequency of extreme weather seen in recent years. This transition is also being aided by the falling price of clean energy from renewables, in particular, solar and wind farms, which will become the dominant sources. The area of land or sea required for these farms is readily available, as are the back-ups required to handle their variability. Alternative supplies of low-carbon energy are examined. In the Paris Agreement in 2015, it was recognized that carbon dioxide emissions must reach net-zero by 2050 to avoid dangerous climate change.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2880 ◽  
Author(s):  
Getachew F. Belete ◽  
Alexey Voinov ◽  
Iñaki Arto ◽  
Kishore Dhavala ◽  
Tatyana Bulavskaya ◽  
...  

The use of simulation models is essential when exploring transitions to low-carbon futures and climate change mitigation and adaptation policies. There are many models developed to understand socio-environmental processes and interactions, and analyze alternative scenarios, but hardly one single model can serve all the needs. There is much expectation in climate-energy research that constructing new purposeful models out of existing models used as building blocks can meet particular needs of research and policy analysis. Integration of existing models, however, implies sophisticated coordination of inputs and outputs across different scales, definitions, data and software. This paper presents an online integration platform which links various independent models to enhance their scope and functionality. We illustrate the functionality of this web platform using several simulation models developed as standalone tools for analyzing energy, climate and economy dynamics. The models differ in levels of complexity, assumptions, modeling paradigms and programming languages, and operate at different temporal and spatial scales, from individual to global. To illustrate the integration process and the internal details of our integration framework we link an Integrated Assessment Model (GCAM), a Computable General Equilibrium model (EXIOMOD), and an Agent Based Model (BENCH). This toolkit is generic for similar integrated modeling studies. It still requires extensive pre-integration assessment to identify the ‘appropriate’ models and links between them. After that, using the web service approach we can streamline module coupling, enabling interoperability between different systems and providing open access to information for a wider community of users.


Sign in / Sign up

Export Citation Format

Share Document