Experimental Analysis of R134a/LPG as Replacement of R134a in a Vapor-Compression Refrigeration System

2017 ◽  
Vol 25 (02) ◽  
pp. 1750015 ◽  
Author(s):  
Jatinder Gill ◽  
Jagdev Singh

This paper presents an experimental analysis of a vapor compression refrigeration system (VCRS) using the mixture of R134a and LPG with mass fractions of 28:72 as an alternative to R134a. In this work, we compare the energy performance of both refrigerants, R134a/LPG (28:72) and R134a, in a monitored vapor compression refrigeration system under a wide range of experimental conditions. So, the System with R134a/LPG (28:72) was tested by varying the capillary tube length and refrigerant charge under experimental conditions. Performance comparisons of both the systems are made taking refrigerant R134a as baseline, and the results show that the compressor power consumption, compressor discharge temperature and pull down time obtained with R134a/LPG (28:72) of 118[Formula: see text]g and capillary tube length of 5.1 m in vapor compression refrigeration system are about 4.4% 2.4% and 5.3%, respectively, lower than that obtained with R134a in the studied range. Also, when using R134a/LPG (28:72), the system shows values of refrigeration capacity and COP are about 10.6% and 15.2% respectively, higher than those obtained using R134a, In conclusion, the mixing refrigerant R134a/LPG proposed in this study seems to be an appropriate long-term candidate to replace R134a as a new generation refrigerant of VCRS, because of its well environmentally acceptable properties and its favorable refrigeration performances.

2014 ◽  
Vol 592-594 ◽  
pp. 1638-1641
Author(s):  
M. Ravi Chandra ◽  
Kappati Manikanth Reddy

The principal objective of the paper is to modify the conventional vapor compression refrigeration system by connecting heat exchangers thereby heating and cooling of water is done simultaneously. The vapor refrigerant is supplied to the hermetic sealed compressor where the refrigerant gets compressed to a temperature of 100-120◦ C. The compressor is connected to a counter flow heat exchanger. Experimentation is carried out to design and manufacture a modified vapor compression refrigeration system. The main parameters considered during the design are connection of a compressor to a hermetically sealed compressor, keeping polyurethane foam as insulating material, adjusting the capillary tube and finned evaporators. The operations carried during the fabrication of equipment are bending, brazing and arc welding process. After the experimental setup has been fabricated the system is checked for the performance by using refrigerants R-22 and R-407.The results are plotted between heating temperatures, cooling temperatures with respect to time in minutes.


Vapor compression refrigeration system is substantial to human comfort and needs that contributes to the progress mainly in agriculture, food preservation and in medical application. One of the applications that this study focused on is the study of the choke points in mini expansion device for the development of portable vaccine carrier kit. This study utilized a vapor compression refrigeration system, and aims to improve the system operation of a small-scale vapor compression refrigeration system by using spirally-arranged capillary tubes with five(5) different hydraulic diameters, namely; 0.20mm, 0.25mm, 0.30mm, 0.35mm and 0.40mm. A 1/8 horsepower vapor compression refrigeration system of a water dispenser is used as an experimental rig that supply the required refrigerant flow on the spirally- arranged expansion device. Guitar strings are used to reduce the hydraulic diameter of the commercially available capillary tubes. With the inserted guitar strings, the five(5) different hydraulic diameters in this study would be connected to the experimental rig. The data gathering method is developed by using a data logger and the fabricated spirally-arranged capillary tubes connected to the experimental rig. The determination of its lengths of choke point and the behavior of the pressure drop is measured during the different trials used for every hydraulic diameter of the spirally-arranged capillary tube. The mathematical equation that correlates the hydraulic diameters of the capillary tubes and their corresponding choke points is represented by the equation y = -1,836.0x2 + 2,319.0x-1 - 1.7860, where y is the distance of the capillary tube choke point and x is the hydraulic diameter of the fabricated spirally-arranged capillary tubes. This equation correlates the hydraulic diameter of a capillary tube to its corresponding choke point length with a value of R2 = 0.9947.


Sign in / Sign up

Export Citation Format

Share Document