Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler

2011 ◽  
Vol 88 (12) ◽  
pp. 4742-4748 ◽  
Author(s):  
Ciro Aprea ◽  
Angelo Maiorino ◽  
Rita Mastrullo
2017 ◽  
Vol 25 (02) ◽  
pp. 1750015 ◽  
Author(s):  
Jatinder Gill ◽  
Jagdev Singh

This paper presents an experimental analysis of a vapor compression refrigeration system (VCRS) using the mixture of R134a and LPG with mass fractions of 28:72 as an alternative to R134a. In this work, we compare the energy performance of both refrigerants, R134a/LPG (28:72) and R134a, in a monitored vapor compression refrigeration system under a wide range of experimental conditions. So, the System with R134a/LPG (28:72) was tested by varying the capillary tube length and refrigerant charge under experimental conditions. Performance comparisons of both the systems are made taking refrigerant R134a as baseline, and the results show that the compressor power consumption, compressor discharge temperature and pull down time obtained with R134a/LPG (28:72) of 118[Formula: see text]g and capillary tube length of 5.1 m in vapor compression refrigeration system are about 4.4% 2.4% and 5.3%, respectively, lower than that obtained with R134a in the studied range. Also, when using R134a/LPG (28:72), the system shows values of refrigeration capacity and COP are about 10.6% and 15.2% respectively, higher than those obtained using R134a, In conclusion, the mixing refrigerant R134a/LPG proposed in this study seems to be an appropriate long-term candidate to replace R134a as a new generation refrigerant of VCRS, because of its well environmentally acceptable properties and its favorable refrigeration performances.


2019 ◽  
Vol 18 (2) ◽  
pp. 19
Author(s):  
L. S. Santana ◽  
J. Castro ◽  
L. M. Pereira

Vapor-compression refrigeration systems require a significant amount of electrical energy. Therefore, there is a need for finding efficient ways of operating this equipment, reducing their energy consumption. The use of heat exchangers between the suction line and the liquid line can produce a better performance of the thermodynamic cycle, as well as reduce it. The present work aims at an experimental analysis of the suction/liquid heat exchanger present in a freezer running with refrigerant fluid R-134a. Three different scenarios were used in order to evaluate the thermal performance of the refrigeration cycle. The first scenario was the conventional freezer set up to collect the required data for further comparison. Moreover, the second and third scenarios were introduced with a 20 cm and 40 cm suction/liquid heat exchanger, respectively, into the system. From the experiments, it was observed that the heat exchange does not significantly affect the coefficient of performance (COP) of the freezer. It was concluded from this work that the best scenario analyzed was the 20 cm suction/liquid heat exchanger where most of the thermodynamic properties were improved, one of them being the isentropic efficiency.


2021 ◽  
Vol 26 (2) ◽  
pp. 47
Author(s):  
Julien Eustache ◽  
Antony Plait ◽  
Frédéric Dubas ◽  
Raynal Glises

Compared to conventional vapor-compression refrigeration systems, magnetic refrigeration is a promising and potential alternative technology. The magnetocaloric effect (MCE) is used to produce heat and cold sources through a magnetocaloric material (MCM). The material is submitted to a magnetic field with active magnetic regenerative refrigeration (AMRR) cycles. Initially, this effect was widely used for cryogenic applications to achieve very low temperatures. However, this technology must be improved to replace vapor-compression devices operating around room temperature. Therefore, over the last 30 years, a lot of studies have been done to obtain more efficient devices. Thus, the modeling is a crucial step to perform a preliminary study and optimization. In this paper, after a large introduction on MCE research, a state-of-the-art of multi-physics modeling on the AMRR cycle modeling is made. To end this paper, a suggestion of innovative and advanced modeling solutions to study magnetocaloric regenerator is described.


Sign in / Sign up

Export Citation Format

Share Document