Numerical Study on Choked Flow of CO2 Refrigerant in Helical Capillary Tube

2018 ◽  
Vol 26 (03) ◽  
pp. 1850027 ◽  
Author(s):  
Pravin Jadhav ◽  
Neeraj Agrawal

This paper presents a numerical study on an adiabatic helical capillary tube employing homogenous and choked flow conditions of a CO2 transcritical system. The theoretical model is based on the fundamental principle of fluid dynamics and thermodynamics. The result of the present model validates with the previously published data. The influence of operating and geometric parameters on the performance of the capillary tube has been evaluated. Flow characterizations of choked and unchoked flow conditions are determined. As the evaporator pressure drops, from unchoked condition to choked state, the percentage change in mass flow rate is minimal. A simulation graph is developed which has been helpful for the design of the helical capillary tube. The choked flow condition in a capillary tube is avoided by either increasing tube diameter of the fixed length tube or decreasing the length of the fixed tube diameter.

2020 ◽  
Vol 28 (03) ◽  
pp. 2050024
Author(s):  
Pravin Jadhav ◽  
Neeraj Agrawal

The flow characteristics of CO2 refrigerant are numerically studied for an adiabatic spirally coiled capillary tube employing choked flow conditions. The mass, momentum and energy conservation equations are used to develop a numerical model. The existing model is verified with the published results. The choked flow behavior at various geometric parameters viz. tube diameter and spiral pitch is studied. Similarly, the influence of these parameters on the mass flow rate through the tube is observed. A significant change in mass flow rate is due to a change in tube diameter, whereas a minimal variation is observed with the change in surface roughness and spiral pitch. Moreover, it is observed that the coiling effect has a significant influence on the flow behavior of the spiral capillary tube. As the pressure decreases, from unchoked to the choked pressure in the evaporator by 63.46%, the mass flow rate increases by 9.46% only. The capillary tube choking is circumvented by increasing spiral pitch, tube diameter and decreasing the length of the tube. A unique nomogram is developed that gives the best understanding of choked and unchoked flow conditions, that graphical representation is useful to design the spirally coiled capillary tube. By using that, the choked length is identified for the known mass flow rate, even more, the choked mass flow rate is known for a given tube length. Moreover, for the given tube length and evaporator temperature, a nomogram is useful to the known choked values of mass flow rate and exit values of the evaporator pressure and quality of refrigerant.


Author(s):  
Adnan Poshtkouhian Badi ◽  
Hamid Beheshti

The focus of this study is on serial and parallel configurations of a multistage thermoacoustic engines (TAE). Thermoacoustics integrates fluid dynamics, thermodynamics, and acoustics to explain the interactions existing between heat and sound. Considerable amounts of waste heat are released to the environment in everyday industrial processes. This waste heat cannot be reused due to its low temperature. One way for reusing some of this waste heat is to employ a thermoacoustic heat pump. TAEs can be driven by waste heat and are capable of supplying the power to drive the thermoacoustic heat pumps. However, due to the low temperature of this waste heat, single-stage TAEs cannot provide the required temperature lifts. Multistage TAEs are advantageous because they can provide sufficient temperature lifts. In this study, a computational fluid dynamics (CFD) simulation is carried out to understand the conversion process of heat to sound and study the nonlinear conjugation of unsteady heat release and acoustic disturbances. The two main parameters evaluated in this simulation are the initial pressure disturbance and the stack's temperature gradient. Their effects on actuating limit cycle oscillations are examined in a 2D numerical model. The numerical simulation results indicate that the pressure amplitude varies through alteration made in these mentioned parameters. The present numerical results are validated by previously published data.


Author(s):  
Nafiseh Banazadeh-Neishabouri ◽  
Siamack A. Shirazi ◽  
Jud Smalley ◽  
Mike Lybarger

Abstract Cavitation and choked flow conditions can occur when high-pressure drops are encounters in various types of valves, which prevent them to work properly and may cause severe erosion damage inside the valves that decrease their lifetime. Prediction of these critical conditions leads to the prevention of cavitation and helps to improve the design of the valve geometries to delay and prevent these critical flow conditions. Computational Fluid Dynamics (CFD) is a powerful tool that can be used to simulate flow conditions and to predict the incipient of cavitation and consequently choked flow in the valve through solving the Time Averaged Navier-Stokes equations under multi-phase flow conditions. Therefore, CFD simulations have been conducted for two types of excess flow valves. The mixture multi-phase flow solution method along with the k-ε realizable turbulence model has been utilized to solve the behavior of vapor flow inside the valve and simulate the cavitation phenomenon. It was observed that CFD could capture the inception of cavitation and choked flow inside the valve successfully. Simulated CFD results also indicated a good agreement with experimental data that were obtained under lower pressure drop conditions. The effects of various inlet pressures on the cavitation intensity have been also studied, and it was concluded that at higher inlet pressure with constant pressure outlet the cavitation strength is greater than lower inlet pressures.


1984 ◽  
Vol 146 ◽  
pp. 331-345 ◽  
Author(s):  
I. G. Bromilow ◽  
R. R. Clements

Flow visualization has shown that the interaction of line vortices is a combination of tearing, elongation and rotation, the extent of each depending upon the flow conditions. A discrete-vortex model is used to study the interaction of two and three growing line vortices of different strengths and to assess the suitability of the method for such simulation.Many of the features observed in experimental studies of shear layers are reproduced. The controlled study shows the importance and rapidity of the tearing process under certain conditions.


1995 ◽  
Vol 22 (1) ◽  
pp. 55-71
Author(s):  
Y. Ouellet ◽  
A. Khelifa ◽  
J.-F. Bellemare

A numerical study based on a two-dimensional finite element model has been conducted to analyze flow conditions associated with different possible designs for the reopening of Havre aux Basques lagoon, located in Îles de la Madeleine, in the middle of the Gulf of St. Lawrence. More specifically, the study has been done to better define the depth and geometry of the future channel as well as its orientation with regard to tidal flows within the inlet and the lagoon. Results obtained from the model have been compared and analyzed to put forward some recommendations about choice of a design insuring the stability of the inlet with tidal flows. Key words: numerical model, finite element, lagoon, reopening, Havre aux Basques, Îles de la Madeleine.


Sign in / Sign up

Export Citation Format

Share Document