PHASE-FIELD SIMULATION FOR MICROSTRUCTURAL DEVELOPMENT OF TEXTURED CERAMICS PREPARED BY REACTION TEMPLATED GRAIN GROWTH

2012 ◽  
Vol 02 (01) ◽  
pp. 1250009 ◽  
Author(s):  
LIANGLIANG LIU ◽  
FENG GAO ◽  
GUOXIN HU ◽  
JIANGNAN LIU

A modified model using phase-field method in order to describe the microstructural development for the reaction templated grain growth process was developed. The current model well expressed anisotropic enlargement of the template particles. The initial parameters such as the matrix particles size, the template particles size, fraction, aspect ratio of the template particles and porosity were examined. The simulation results show that the fraction of oriented grains increases with decreasing the matrix particles size and porosity, and increasing the fraction of the initial template particles. An increase for the aspect ratio of template particles gives rise to the anisotropic microstructure development. The study suggests that the simulation results would give a guiding principle in terms of the initial preparation conditions for the textured ceramics having both a large fraction of oriented grains and anisotropic microstructure.

2010 ◽  
Vol 663-665 ◽  
pp. 1024-1027
Author(s):  
Wei Zhao ◽  
Ruo Cai Pan ◽  
Hao Xue

Micro-scale plake-like SrTO3 particles were synthesized by two routes of topochemical conversion. One is by growing on Sr3Ti2O7 (S3T2) core particles in molten salt condition, and the other is from the layer-structured SrBi4Ti4O15 (SBT) precursor in a KCl medium. The effects of the morphology and size of the precursor to platelet SrTiO3 crystals were studied. X-ray diffraction analysis revealed that the crystallographic {010} plane of SBT was converted into the pseudo-cubic {001} plane of SrTiO3. The polycrystalline SrTiO3 particles from BST precursor exhibited a plate-like shape with 10-15μm in length and a high aspect ratio, and were more suitable for preparing textured ceramics by templated grain growth process than the platelets from the S3T2 precursors.


2005 ◽  
Vol 475-479 ◽  
pp. 1137-1140
Author(s):  
Lili Zhao ◽  
Feng Gao ◽  
Wei Min Wang ◽  
Chang Sheng Tian

The oriented 0.67Pb (Mg1/3Nb2/3)O3-0.33PbTiO3 (PMNT) polycrystals were prepared by the conventional ceramic technique and the templated grain growth method adding excess PbO in the matrix. Kinetics of the development of oriented structure was investigated systemically. In the presence of PbO liquid phase, the oriented PMNT polycrystals mainly grow by the dissolution-precipitation mechanism. The diffusion is determined by the sintering temperature and the PbO-excess content in the matrix. The thickness of oriented PMNT polycrystals displays a t1/3 dependence, which is characteristic of diffusion-controlled growth. For the thicker oriented structure, 20% excess PbO in the PMNT matrix and 1150oC for 10h are the proper experimental conditions. Moreover, the addition of PbO in the matrix hardly affects the final composition of ceramic matrix.


1999 ◽  
Vol 601 ◽  
Author(s):  
B.-N. Kim ◽  
K. Hiraga

AbstractSuperplastic tensile deformation is simulated in 2 dimensions by incorporating grain boundary diffusion and concurrent grain growth derived from static and dynamic growth mechanisms. The following relationship is found between microstructural changes and deformation behavior for constant stress conditions. Grain boundary diffusion produces an increase in the aspect ratio of the matrix grains during deformation and the increased aspect ratio causes a change in creep rate parameters: the stress exponent is decreased from the initial value of 1.0 for equiaxed grains and the grain size exponent is increased from the initial value of 3.0. Accelerated grain growth is also found by the present simulation.


1998 ◽  
pp. 303-310 ◽  
Author(s):  
M. M. Seabaugh ◽  
S. H. Hong ◽  
G. L. Messing

Author(s):  
Ehsan Sabooniha ◽  
Mohammad-Reza Rokhforouz ◽  
Shahab Ayatollahi

Biotechnology has had a major effect on improving crude oil displacement to increase petroleum production. The role of biopolymers and bio cells for selective plugging of production zones through biofilm formation has been defined. The ability of microorganisms to improve the volumetric sweep efficiency and increase oil recovery by plugging off high-permeability layers and diverting injection fluid to lower-permeability was studied through experimental tests followed by multiple simulations. The main goal of this research was to examine the selective plugging effect of hydrophobic bacteria cell on secondary oil recovery performance. In the experimental section, water and aqua solution of purified Acinetobacter strain RAG-1 were injected into an oil-saturated heterogeneous micromodel porous media. Pure water injection could expel oil by 41%, while bacterial solution injection resulted in higher oil recovery efficiency; i.e., 59%. In the simulation section, a smaller part of the heterogeneous geometry was employed as a computational domain. A numerical model was developed using coupled Cahn–Hilliard phase-field method and Navier–Stokes equations, solved by a finite element solver. In the non-plugging model, approximately 50% of the matrix oil is recovered through water injection. Seven different models, which have different plugging distributions, were constructed to evaluate the influences of selective plugging mechanism on the flow patterns. Each plugging module represents a physical phenomenon which can resist the displacing phase flow in pores, throats, and walls during Microbial-Enhanced Oil Recovery (MEOR). After plugging of the main diameter route, displacing phase inevitably exit from sidelong routes located on the top and bottom of the matrix. Our results indicate that the number of plugs occurring in the medium could significantly affect the breakthrough time. It was also observed that increasing the number of plugging modules may not necessarily lead to higher ultimate oil recovery. Furthermore, it was shown that adjacent plugs to the inlet caused flow patterns similar to the non-plugging model, and higher oil recovery factor than the models with farther plugs from the inlet. The obtained results illustrated that the fluids distribution at the pore-scale and the ultimate oil recovery are strongly dependent on the plugging distribution.


2006 ◽  
Vol 320 ◽  
pp. 15-18 ◽  
Author(s):  
Takuya Sawada ◽  
Hirozumi Ogawa ◽  
Masahiko Kimura ◽  
Kosuke Shiratsuyu ◽  
Akira Ando

A study has been done for the piezoelectric properties in texured ceramics of SrBi2Nb2O9 (SBN) fabricated by the templated grain growth (TGG) method. Remanent polarization along to the stacking direction increased with the orientation degrees. That corresponds to the increases in electro-mechanical coupling coefficient with orientation degree. The temperature coefficient of the resonant frequency (TCF) in thickness sheer vibration mode changed from negative to positive with increasing orientation degrees, and an excellent TCF of -0.4 ppm/°C was obtained for the specimen with an orientation degree of 76%.


2013 ◽  
Vol 97 (2) ◽  
pp. 420-426 ◽  
Author(s):  
Harvey Amorín ◽  
Hana Uršič ◽  
Pablo Ramos ◽  
Janez Holc ◽  
Rodrigo Moreno ◽  
...  

1992 ◽  
Vol 287 ◽  
Author(s):  
M.J. Hoffmann ◽  
G. Petzow

ABSTRACTParameters controlling the size and aspect ratio of elongated Si3N4 grains are discussed, based on the assumption that only pre-existing β-Si3N4 particles of the starting powder grow. Powder mixtures of α-rich and β-rich Si3N4 were prepared In order to study the microstructural development. The resulting microstructures were analyzed by quantitative microstructural analysis determining the distribution of the length and aspect ratio of the Si3N4 grains. Subsequently, the Influence of the sintering conditions on grain growth was analyzed In relation to mechanical properties. A high Weibull modulus and the non-catastrophic failure during thermal shock of coarse-grained materials Is attributed to an R-curve behaviour. Finally, the influence of sintering additives on the mechanical properties was studied. The Importance of phase relationships between the matrix and the grain boundary phase Is discussed for Si3N4 with Yb2O3 additives. It Is demonstrated that the oxygen content of Si3N4 powder must been taken Into account In order to devitrify defined secondary phases and to achieve a high degree of crystallization. A reduction in the amount of additives does not necessarily Improve the properties as high temperature strength and creep data Indicate.


2014 ◽  
Vol 46 (2) ◽  
pp. 887-893 ◽  
Author(s):  
Guangming Zhao ◽  
Yanqing Yang ◽  
Wei Zhang ◽  
Xian Luo ◽  
Bin Huang ◽  
...  
Keyword(s):  
Β Phase ◽  

Sign in / Sign up

Export Citation Format

Share Document