PRODUCTION OF BIOFUEL FROM WASTE LIGNOCELLULOSIC BIOMASS MATERIALS BASED ON ENERGY SAVING VIEWPOINT

2012 ◽  
Vol 06 ◽  
pp. 715-720
Author(s):  
Maki Takano ◽  
Kazuhiro Hoshino

To develop biofuel production from waste lignocellulosic biomass materials the rice straw was selected one of renewable material and the degradation condition about pretreatment and enzymatic hydrolysis to obtain effectively fermentable sugars was investigated. Rice straw was pretreated by five kinds of methods and then the components ratio of rice straw was examined. First, the steam explosion was selected based on the degradability and the requirement energy. In addition, the best suitable combination of two cellulases to effective and economical hydrolyze was determined from the degradability of these pretreated rice straws. In the simultaneous saccharification and fermentation of the steam explosion rice straw by combining cellulase cocktail and a novel fermenting fungus, 13.2 g/L ethanol was able to product for 96 h.

2016 ◽  
Vol 6 (1) ◽  
pp. 773-779
Author(s):  
Leonard Guimarães Carvalho ◽  
Luiz Felipe A. Modesto ◽  
Donato A. Gomes Aranda ◽  
Nei Pereira Jr

Brazil presents the world's largest potential for the production of palm oil due to nearly 75 million hectares of land suitable for palm culture and advantageous soil and climate. The biomass generated in the production of palm oil (palm pressed fiber, PPF) is mainly composed of lignocellulosic material that can be hydrolyzed into fermentable sugars for further conversion to ethanol. This work evaluated alkaline pretreatment of this palm oil residue and subsequent Simultaneous Saccharification and Fermentation (SSF), achieving a conversion of glucose to ethanol higher than 90% and a concentration equivalent to 22.40 g/L of the alcohol.  


2018 ◽  
Vol 39 (3) ◽  
Author(s):  
Devitra Saka Rani ◽  
Yanni Kussuryani

Lignocellulosic biomass is excellent feedstock for biofuel such as biobutanol. Bagasse, rice straw, and empty fruit bunch (EFB) oil palm are untapped potential for biobutanol production as gasoline blending/ substitution. However, biobutanol production by fermentation from lignocellulosic biomass is a process that consumes time and energy which leads to high production costs. This research is intended to optimize biobutanol production that reduces production costs, an important factor on an industrial scale. Optimization is conducted by replacing the buffer solution in enzymatic hydrolysis with distilled water and by using Simultaneous Saccharification and Fermentation (SSF). The results showed that the buffer replacement with distilled water can reduce cost by approximately 41,726 IDR/liter hydrolysate. Biobutanol contents from all biomass of bagasse, rice straw, and EFB oil palm are higher using SSF compared to Separate Hydrolysis and Fermentation (SHF). The SSF system can cut production time by 3 days and save electricity of 32.4 kWh.?


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shannon M. Hoffman ◽  
Maria Alvarez ◽  
Gilad Alfassi ◽  
Dmitry M. Rein ◽  
Sergio Garcia-Echauri ◽  
...  

Abstract Background Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures. Results In this work, we show that cellulosic emulsions hydrolyze rapidly at temperatures tolerable to yeast, reaching up to 40-fold higher conversion in the first hour compared to microcrystalline cellulose (MCC). To evaluate suitable conditions for the eSSF process, we explored the upper temperature limits for the thermotolerant yeasts Kluyveromyces marxianus and Ogataea polymorpha, as well as Saccharomyces cerevisiae, and observed robust fermentation at up to 46, 50, and 42 °C for each yeast, respectively. We show that the eSSF process reaches high ethanol titers in short processing times, and produces close to theoretical yields at temperatures as low as 30 °C. Finally, we demonstrate the transferability of the eSSF technology to other products by producing the advanced biofuel isobutanol in a light-controlled eSSF using optogenetic regulators, resulting in up to fourfold higher titers relative to MCC SSF. Conclusions The eSSF process addresses the main challenges of cellulosic biofuel production by increasing saccharification rate at temperatures tolerable to yeast. The rapid hydrolysis of these emulsions at low temperatures permits fermentation using non-thermotolerant yeasts, short processing times, low enzyme loads, and makes it possible to extend the process to chemicals other than ethanol, such as isobutanol. This transferability establishes the eSSF process as a platform for the sustainable production of biofuels and chemicals as a whole.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8662-8676
Author(s):  
Maria Mushtaq ◽  
Muhammad Javaid Asad ◽  
Muhammad Zeeshan Hyder ◽  
Syed Muhammad Saqlan Naqvi ◽  
Saad Imran Malik ◽  
...  

Utilization of biomass for production of second generation bioethanol was considered as a way to reduce burdens of fossil fuel in Pakistan. The materials wheat straw, rice straw, cotton stalk, corn stover, and peel wastes were used in this experiment. Various parameters, such as acidic and alkali pretreatment, enzymatic hydrolysis by cellulases, and effect of proteases inhibitors on ethanol production, were examined. Fermentation was completed by the yeasts Saccharomyces cerevisiae and Clostridium thermocellum separately, and their ethanol production were compared and maximum ethanol yield was obtained with wheat straw i.e.,11.3 g/L by S. cerevisiae and 8.5 g/L by C. thermocellum. Results indicated that a higher quantity of sugar was obtained from wheat straw (19.6 ± 1.6 g/L) followed by rice straw (17.6 ± 0.6 g/L) and corn stover (16.1 ± 0.9 g/L) compared to the other evaluated biomass samples. A higher yield of ethanol (11.3 g/L) was observed when a glucose concentration of 21.7 g/L was used, for which yeast fermentation efficiency was 92%. Results also revealed the increased in ethanol production (93%) by using celluases in combination with recombinant Serine protease inhibitors from C. thermocellum. It is expected that the use of recombinant serpins with cellulases will play a major role in the biofuel production by using agricultural biomass. This will also help in the economics of the biofuel.


2014 ◽  
Vol 917 ◽  
pp. 80-86
Author(s):  
Mohd Saman Siti Aisyah ◽  
Pacharakamol Petchpradab ◽  
Yoshimitsu Uemura ◽  
Suzana Yusup ◽  
Machi Kanna ◽  
...  

Separate hydrolysis and fermentation (SHF) is the common process in producing ethanol from lignocellulosic biomass. Nowadays, simultaneous saccharification and fermentation (SSF) process has been seen as potential process for producing ethanol with shortens process time with higher yield of ethanol. Hence, in the current work, the utilization of empty fruit bunches (EFB) in SSF process was studied. In order to improve saccharification reactivity of EFB, hydrothermal pretreatment at 180 and 220 °C was used to pretreat EFB. The findings showed that SSF has the potential in producing ethanol from EFB.


Sign in / Sign up

Export Citation Format

Share Document