scholarly journals COSMOLOGY WITH THE Ep,i – Eiso CORRELATION OF GAMMA–RAY BURSTS

Author(s):  
LORENZO AMATI

Gamma–Ray Bursts (GRBs) are the brightest sources in the universe, emit mostly in the hard X–ray energy band and have been detected at redshifts up to about 8.2. Thus, they are in principle very powerful probes for cosmology. I shortly review the researches aimed to use GRBs for the measurement of cosmological parameters, which are mainly based on the correlation between spectral peak photon energy and total radiated energy or luminosity. In particular, based on an enriched sample of 120 GRBs, I will provide an update of the analysis by Amati et al. (2008) aimed at extracting information on ΩM and, to a less extent, on ΩΛ, from the E p,i – E iso correlation.

2003 ◽  
Vol 591 (2) ◽  
pp. L91-L94 ◽  
Author(s):  
P. Mszros ◽  
M. J. Rees

1999 ◽  
Vol 08 (04) ◽  
pp. 507-517 ◽  
Author(s):  
DEEPAK JAIN ◽  
N. PANCHAPAKESAN ◽  
S. MAHAJAN ◽  
V. B. BHATIA

Identification of gravitationally lensed Gamma Ray Bursts (GRBs) in the BATSE 4B catalog can be used to constrain the average redshift <z> of the GRBs. In this paper we investigate the effect of evolving lenses on the <z> of GRBs in different cosmological models of the universe. The cosmological parameters Ω and Λ have an effect on the <z> of GRBs. The other factor which can change the <z> is the evolution of galaxies. We consider three evolutionary model of galaxies. In particular, we find that the upper limit on <z> of GRBs is higher in evolving model of galaxies as compared to non-evolving models of galaxies.


2011 ◽  
Vol 7 (S279) ◽  
pp. 433-446

Measuring cosmological parameters with GRBs: status and perspectivesNew interpretation of the Amati relationThe SED Machine - a dedicated transient spectrographPTF10iue - evidence for an internal engine in a unique Type Ic SNDirect evidence for the collapsar model of long gamma-ray burstsOn pair instability supernovae and gamma-ray burstsPan-STARRS1 observations of ultraluminous SNeThe influence of rotation on the critical neutrino luminosity in core-collapse supernovaeGeneral relativistic magnetospheres of slowly rotating and oscillating neutron starsHost galaxies of short GRBsGRB 100418A: a bridge between GRB-associated hypernovae and SNeTwo super-luminous SNe at z ~ 1.5 from the SNLSProspects for very-high-energy gamma-ray bursts with the Cherenkov Telescope ArrayThe dynamics and radiation of relativistic flows from massive starsThe search for light echoes from the supernova explosion of 1181 ADThe proto-magnetar model for gamma-ray burstsStellar black holes at the dawn of the universeMAXI J0158-744: the discovery of a supersoft X-ray transientWide-band spectra of magnetar burst emissionDust formation and evolution in envelope-stripped core-collapse supernovaeThe host galaxies of dark gamma-ray burstsKeck observations of 150 GRB host galaxiesSearch for properties of GRBs at large redshiftThe early emission from SNeSpectral properties of SN shock breakoutMAXI observation of GRBs and short X-ray transientsA three-dimensional view of SN 1987A using light echo spectroscopyX-ray study of the southern extension of the SNR Puppis AAll-sky survey of short X-ray transients by MAXI GSCDevelopment of the CALET gamma-ray burst monitor (CGBM)


Author(s):  
Giancarlo Ghirlanda

The correlations involving the long-gamma-ray bursts (GRBs) prompt emission energy represent a new key to understand the GRB physics. These correlations have been proved to be the tool that makes long-GRBs a new class of standard candles. Gamma Ray Bursts, being very powerful cosmological sources detected in the hard X-ray band, represent a new tool to investigate the Universe in a redshift range, which is complementary to that covered by other cosmological probes (SNIa and CMB). A review of the , , and correlations is presented. Open issues related to these correlations (e.g. presence of outliers and selection effects) and to their use for cosmographic purposes (e.g. dependence on model assumptions) are discussed. Finally, the relevance of thermal components in GRB spectra is discussed in the light of some of the models recently proposed for the interpretation of the spectral-energy correlations.


2020 ◽  
Author(s):  
Maria Dainotti ◽  
Jacob Fernandez ◽  
Giuseppe Saraccino ◽  
Aleksander Lenart ◽  
Sergey Postnikov ◽  
...  

Abstract Cosmological models and the value of their parameters are at the center of the debate because of the tension between the results obtained by the SNe Ia data and the Plank ones of the Cosmic Microwave Background Radiation. Thus, adding cosmological probes observed at high redshifts, such as Gamma-Ray Bursts (GRBs), is needed. Using GRB correlations between luminosities and a cosmological independent variable is challenging because GRB luminosities vary widely. We corrected a tight correlation between the rest-frame end time of the X-ray plateau, its corresponding X-ray luminosity, and the peak prompt luminosity: the so-called fundamental plane relation, using the jet opening angle. Its intrinsic scatter is 0:017 m 0:010 dex, 95% smaller than the isotropic fundamental plane relation, the smallest compared to any current GRB correlation in the literature. This shows that GRBs can be used as reliable cosmological tools. We use this GRB corrected correlation for the so-called platinum sample (a well-defined set with relatively flat plateaus), together with SNe Ia data, to constrain different cosmological parameters like the matter content of the universe today, M, the Hubble constant H0, and the dark energy parameter w for a wCDM model. We confirm the wCDM model but using GRBs up to z = 5, a redshift range much larger than one of SNe Ia.


Author(s):  
Nial R Tanvir ◽  
Páll Jakobsson

The extreme luminosity of gamma-ray bursts and their afterglows means they are detectable, in principle, to very high redshifts. Although the redshift distribution of gamma-ray bursts (GRBs) is difficult to determine, due to incompleteness of present samples, we argue that for Swift-detected bursts, the median redshift is between 2.5 and 3, with a few per cent probably at z >6. Thus, GRBs are potentially powerful probes of the era of reionization and the sources responsible for it. Moreover, it seems probable that they can provide constraints on the star-formation history of the Universe and may also help in the determination of the cosmological parameters.


2020 ◽  
Vol 499 (1) ◽  
pp. 391-403 ◽  
Author(s):  
Narayan Khadka ◽  
Bharat Ratra

ABSTRACT We use measurements of the peak photon energy and bolometric fluence of 119 gamma-ray bursts (GRBs) extending over the redshift range of 0.3399 ≤ z ≤ 8.2 to simultaneously determine cosmological and Amati relation parameters in six different cosmological models. The resulting Amati relation parameters are almost identical in all six cosmological models, thus validating the use of the Amati relation in standardizing these GRBs. The GRB data cosmological parameter constraints are consistent with, but significantly less restrictive than, those obtained from a joint analysis of baryon acoustic oscillation and Hubble parameter measurements.


2013 ◽  
Vol 22 (14) ◽  
pp. 1330028 ◽  
Author(s):  
LORENZO AMATI ◽  
MASSIMO DELLA VALLE

In a few dozen seconds, gamma ray bursts (GRBs) emit up to ~1054 erg in terms of an equivalent isotropically radiated energy E iso , so they can be observed up to z ~ 10. Thus, these phenomena appear to be very promising tools to describe the expansion rate history of the universe. Here, we review the use of the Ep,i–E iso correlation of GRBs to measure the cosmological density parameter ΩM. We show that the present data set of GRBs, coupled with the assumption that we live in a flat universe, can provide independent evidence, from other probes, that ΩM ~ 0.3. We show that current (e.g. Swift, Fermi/GBM, Konus-WIND) and forthcoming gamma ray burst (GRB) experiments (e.g. CALET/GBM, SVOM, Lomonosov/UFFO, LOFT/WFM) will allow us to constrain ΩM with an accuracy comparable to that currently exhibited by Type Ia supernovae (SNe–Ia) and to study the properties of dark energy and their evolution with time.


2021 ◽  
Vol 366 (4) ◽  
Author(s):  
Zhi-Ying Liu ◽  
Fu-Wen Zhang ◽  
Si-Yuan Zhu

Sign in / Sign up

Export Citation Format

Share Document