scholarly journals Simplified Thermal Evolution of Proto-Hybrid Stars

2017 ◽  
Vol 45 ◽  
pp. 1760041 ◽  
Author(s):  
Mauro Mariani ◽  
Milva Orsaria ◽  
Héctor Vucetich

We study the possibility of a hadron-quark phase transition in the interior of neutron stars, taking into account different schematic evolutionary stages at finite temperature. Furthermore, we analyze the astrophysical properties of hot and cold hybrid stars, considering the constraint on maximum mass given by the pulsars J1614-2230 and J1614-2230. We obtain cold hybrid stars with maximum masses [Formula: see text] M[Formula: see text]. Our study also suggest that during the proto-hybrid star evolution a late phase transition between hadronic matter and quark matter could occur, in contrast with previous studies of proto-neutron stars.

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
B. Eslam Panah ◽  
T. Yazdizadeh ◽  
G. H. Bordbar

Abstract Motivated by importance of the existence of quark matter on structure of neutron star. For this purpose, we use a suitable equation of state (EoS) which include three different parts: (i) a layer of hadronic matter, (ii) a mixed phase of quarks and hadrons, and, (iii) a strange quark matter in the core. For this system, in order to do more investigation of the EoS, we evaluate energy, Le Chatelier’s principle and stability conditions. Our results show that the EoS satisfies these conditions. Considering this EoS, we study the effect of quark matter on the structure of neutron stars such as maximum mass and the corresponding radius, average density, compactness, Kretschmann scalar, Schwarzschild radius, gravitational redshift and dynamical stability. Also, considering the mentioned EoS in this paper, we find that the maximum mass of hybrid stars is a little smaller than that of the corresponding pure neutron star. Indeed the maximum mass of hybrid stars can be quite close to the pure neutron stars. Our calculations about the dynamical stability show that these stars are stable against the radial adiabatic infinitesimal perturbations. In addition, our analyze indicates that neutron stars are under a contraction due to the existence of quark core.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2481-2484
Author(s):  
H. SHEN ◽  
F. YANG ◽  
P. YUE

We study the hadron-quark phase transition and antikaon condensation which may occur in the core of massive neutron stars. The relativistic mean field theory is used to describe the hadronic phase, while the Nambu-Jona-Lasinio model is adopted for the quark phase. We find that the hadron-quark phase transition is very sensitive to the models used. The appearance of deconfined quark matter and antikaon condensation can soften the equation of state at high density and lower the maximum mass of neutron stars.


2008 ◽  
Vol 17 (05) ◽  
pp. 737-746 ◽  
Author(s):  
H. RODRIGUES ◽  
J. C. T. OLIVEIRA ◽  
S. B. DUARTE

The color–flavor locked (CFL) phase is believed to be the fundamental state of strange quark matter (SQM) at high densities. The CFL phase is a color superconductor composed of pairs of u, d and s quarks, with no electrons, forming a Bose condensate. In this work, we analyze a possible phase transition of hadronic matter made of nucleons, Δ–resonances, hyperons and leptons, to CFL superconducting quark matter. An equation of state taking into account this phase transition is employed to determine the characteristics of a hybrid star. The role of the color superconducting gap on the hybrid stars properties is also discussed.


2002 ◽  
Vol 17 (40) ◽  
pp. 2633-2646 ◽  
Author(s):  
P. K. JENA ◽  
L. P. SINGH

We use a modified SU(2) chiral sigma model to study nuclear matter at high density using mean field approach. We also study the phase transition of nuclear matter to quark matter in the interior of highly dense neutron stars. Stable solutions of Tolman–Oppenheimer–Volkoff equations representing hybrid stars are obtained with a maximum mass of 1.69M⊙, radii around 9.3 km and a quark matter core constituting nearly 55–85% of the star radii.


2021 ◽  
Vol 252 ◽  
pp. 06001
Author(s):  
Themistoklis Deloudis ◽  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

In agreement with the gravitational-wave events which are constantly increasing, new aspects of the internal structure of compact stars have come to light. A scenario in which a first order transition takes place inside these stars is of particular interest as it can lead, under conditions, to a third gravitationally stable branch (besides white dwarfs and neutron stars). This is known as the twin star scenario. The new branch yields stars with the same mass as normal compact stars but quite different radii. In the current work, we focus on hybrid stars undergone a hadron to quark phase transition near their core and how this new stable configuration arises. Emphasis is to be given especially in the aspects of the phase transition and its parametrization in two different ways, namely with Maxwell construction and with Gibbs construction. Qualitative findings of mass-radius relations of these stars will also be presented.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1521-1524 ◽  
Author(s):  
J. G. COELHO ◽  
C. H. LENZI ◽  
M. MALHEIRO ◽  
R. M. MARINHO ◽  
M. FIOLHAIS

We investigate the hadron-quark phase transition inside neutron stars and obtain mass–radius relations for hybrid stars. The equation of state for the quark phase using the standard NJL model is too soft, leading to an unstable star and suggesting a modification of the NJL model by introducing a momentum cutoff dependent on the chemical potential. However, even in this approach, the instability remains. In order to remedy the instability we suggest the introduction of a vector coupling in the NJL model, which makes the EoS stiffer, reducing the instability. We conclude that the possible existence of quark matter inside the stars require high densities, leading to very compact stars.


2020 ◽  
Vol 229 (22-23) ◽  
pp. 3595-3604
Author(s):  
Andreas Bauswein ◽  
Sebastian Blacker

AbstractWe describe an unambiguous gravitational-wave signature to identify the occurrence of a strong phase transition from hadronic matter to deconfined quark matter in neutron star mergers. Such a phase transition leads to a strong softening of the equation of state and hence to more compact merger remnants compared to purely hadronic models. If a phase transition takes place during merging, this results in a characteristic increase of the dominant postmerger gravitational-wave frequency relative to the tidal deformability characterizing the inspiral phase. By comparing results from different purely hadronic and hybrid models we show that a strong phase transition can be identified from a single, simultaneous measurement of pre- and postmerger gravitational waves. Furthermore, we present new results for hybrid star mergers, which contain quark matter already during the inspiral stage. Also for these systems we find that the postmerger GW frequency is increased compared to purely hadronic models. We thus conclude that also hybrid star mergers with an onset of the hadron-quark phase transition at relatively low densities may lead to the very same characteristic signature of quark deconfinement in the postmerger GW signal as systems undergoing the phase transition during merging.


Author(s):  
Ritam Mallick ◽  
Shailendra Singh ◽  
Rana Nandi

Abstract This article studies the maximum mass limit of the hybrid star formed after the shock-induced phase transition of a cold neutron star. By employing hadronic and quark equation of state that satisfies the current mass bound, we use combustion adiabat conditions to find such a limit. The combustion adiabat condition results in a local or a global maximum pressure at an intermediate density range. The maximum pressure corresponds to a local or global maximum mass for the phase transformed hybrid star. The phase transition is usually exothermic if we have a local maximum mass. The criteria for exothermic or endothermic phase transition depend on whether the quark pressure/energy ratios to nuclear pressure/energy are smaller or greater than 1. We find that exothermic phase transition in a cold neutron star usually results in hybrid stars whose mass is smaller than a parent neutron star. The phase transition is endothermic for a global maximum pressure; thereby, one gets a global maximum mass. Hybrid stars much massive than phase transformed local maximum mass can be formed, provided there is some external energy source during the phase transition process. However, for some cases, even massive hybrid stars can form with exothermic phase transition for equations of state having global maximum pressure.


2003 ◽  
Vol 18 (30) ◽  
pp. 2135-2145 ◽  
Author(s):  
P. K. Jena ◽  
L. P. Singh

We use a modified SU(2) chiral sigma model to study nuclear matter component and simple bag model for quark matter constituting a neutron star. We also study the phase transition of nuclear matter to quark matter with the mixed phase characterized by two conserved charges in the interior of highly dense neutron stars. Stable solutions of Tolman–Oppenheimer–Volkoff equations representing hybrid stars are obtained with a maximum mass of 1.67M⊙ and radius around 8.9 km.


Sign in / Sign up

Export Citation Format

Share Document