Electronic Structure and Magnetic Properties of OsCrMnSb and IrCrMnSb from Ab Initio Calculations

SPIN ◽  
2020 ◽  
Vol 10 (04) ◽  
pp. 2050031
Author(s):  
F. Z. Abderrahim ◽  
T. Ouahrani ◽  
M. Dergal ◽  
A. Mahmmoudi

The structural, elastic, electronic and magnetic properties of quaternary OsCrMnSb and IrCrMnSb Heusler alloys are performed employing ab initio electronic structure calculations. It has been identified that the YI type is the most stable structure among the three configurations for both OsCrMnSb and IrCrMnSb alloys in the magnetic state. The calculated cubic elastic constants show that these alloys fulfill the mechanical stability criteria. The band structures and density of state calculations reveal the half-metallic (HM) behavior of these alloys with a direct gap, and the half-metallicity is rather originated from the Cr-d states. Results on magnetic properties suggest that OsCrMnSb and IrCrMnSb are HM antiferromagnets. However, the inclusion of spin–orbit coupling affects strongly the IrCrMnSb alloy, losing its HM nature.

2010 ◽  
Vol 24 (08) ◽  
pp. 967-978 ◽  
Author(s):  
JINGSHAN QI ◽  
HAILIN YU ◽  
XUEFAN JIANG ◽  
DANING SHI

We present a comprehensive investigation of the equilibrium structural, electronic and magnetic properties of C o2 MnSi and C o2 FeSi by density-functional theory (DFT) within the generalized gradient approximation (GGA) using the projected augmented wave (PAW) method. The on-site Coulomb interaction has also taken into account ( GGA +U) approach to unravel the correlation effects on the electronic structure. The change of the energy gap, "spin gap", Fermi energy level and magnetic moments with the lattice parameters is investigated. We found that the on-site correlation interaction in C o2 FeSi is stronger than in C o2 MnSi . So on-site electronic correlation is necessary for C o2 FeSi and the magnetic moments reproduce experimental results well by GGA +U. Further we also found that a moderate change of the lattice parameters does not change the half-metallic ferromagnet (HMF) behavior for both materials. Appearance of half-metallicity is consistent with the integral magnetic moments, which also agrees with the experiment measurements.


2016 ◽  
Vol 34 (4) ◽  
pp. 905-915 ◽  
Author(s):  
M. Rahmoune ◽  
A. Chahed ◽  
A. Amar ◽  
H. Rozale ◽  
A. Lakdja ◽  
...  

AbstractIn this work, first-principles calculations of the structural, electronic and magnetic properties of Heusler alloys CoMnYAl, CoMnYGa and CoMnYIn are presented. The full potential linearized augmented plane waves (FP-LAPW) method based on the density functional theory (DFT) has been applied. The structural results showed that CoMnYZ (Z = Al, Ga, In) compounds in the stable structure of type 1+FM were true half-metallic (HM) ferromagnets. The minority (half-metallic) band gaps were found to be 0.51 (0.158), 0.59 (0.294), and 0.54 (0.195) eV for Z = Al, Ga, and In, respectively. The characteristics of energy bands and origin of minority band gaps were also studied. In addition, the effect of volumetric and tetragonal strain on HM character was studied. We also investigated the structural, electronic and magnetic properties of the doped Heusler alloys CoMnYGa1−xAlx, CoMnYAl1−xInx and CoMnYGa1−xInx (x = 0, 0.25, 0.5, 0.75, 1). The composition dependence of the lattice parameters obeys Vegard’s law. All alloy compositions exhibit HM ferromagnetic behavior with a high Curie temperature (TC).


2015 ◽  
Vol 233-234 ◽  
pp. 229-232 ◽  
Author(s):  
Vladimir V. Sokolovskiy ◽  
Mikhail A. Zagrebin ◽  
Y.A. Sokolovskaya ◽  
Vasiliy D. Buchelnikov

The structural and magnetic properties of Mn-based stoichiometric Heusler alloys have investigated by means of ab initio calculations in framework of the density functional theory. First principles electronic structure calculations have shown that Mn2NiZ (Z = Ga, In, Sn, Sb) alloys are ferrimagnets with antiparallel alignment between the Mn atoms. The martensitic transition can be realized in Mn2NiGa and Mn2NiSn alloys with tetragonal ratio of 1.27 and 1.16, respectively. Calculated properties are in a good agreement with available experimental data.


2016 ◽  
Vol 4 (16) ◽  
pp. 3628-3639 ◽  
Author(s):  
Karthik Ramasamy ◽  
Hunter Sims ◽  
Sahar Keshavarz ◽  
Nariman Naghibolashrafi ◽  
Arunava Gupta

Nanocrystals of magnetic chalcospinels CuCr2S4−xSex (0 ≤ x ≤ 4) have been synthesized over the entire composition range and their magnetic properties investigated. Electronic structure calculations predict metallic characteristics in the bulk and “half-metallic” at reduced dimensions.


2011 ◽  
Vol 470 ◽  
pp. 54-59
Author(s):  
Hiroyoshi Itoh ◽  
Syuta Honda ◽  
Junichiro Inoue

The electronic structures of Co-based Heusler alloys with nonstoichiometric atomic compositions as well as those at the interface of semiconductor junctions are investigated using first principles band calculations. It is shown that the electronic structure of a Co-based Heusler alloy is half-metallic, even for nonstoichiometric but Co-rich compositions, whereas the half-metallicity is lost for Co-poor compositions. It is also shown that magnetic moments at the interface of Co2MnSi/ Si junctions are sensitive to the growth direction and interface structure of the junctions. Efficient spin-injection into Si can be achieved by using a (111)-oriented Co-rich Heusler alloy and controlling the layer-by-layer stacking sequence at the interface.


2014 ◽  
Vol 644-650 ◽  
pp. 4880-4883
Author(s):  
L Zhang ◽  
M.X. Hao ◽  
Y.C. Gao ◽  
X. Gao

We investigate the electronic structure and magnetism of DO3-type Heusler alloys Rh3M (M = Al, Ga, In, Si) using the first-principle calculations. The Rh3Si have been predicted to be half-metallic ferromagent at their equilibrium lattice constants. The effect of lattice parameters on the electronic structure and magnetic properties is also discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document