Theoretical investigation of the magnetic ordering and the superconducting state in rare earth iron pnictides

Author(s):  
S. Abbaoui ◽  
A. Zaoui ◽  
S. Kacimi ◽  
M. Djermouni ◽  
M. Bououdina

The superconductivity and magnetic phenomena of the rare earth iron pnictides R FePO (R = La , Sm ) are analyzed using ab initio density functional theory in the local density approximation (LDA) with the on-site Hubbard U eff parameter (LDA + U). The results of the magnetic properties, band structures and Fermi surfaces of the recently synthesized tetragonal layered iron pnictides superconductor SmFePO are presented in comparison with the superconductor LaFePO . The anti-ferromagnetic state [ Sm : AFM, Fe AFM_stripe] is found to be the most stable than the other possible phases, which is in agreement with experiment. The effect of the Hubbard correction is investigated and is found to be a necessary requirement for the accurate description of both the electronic structure and the Fermi surfaces.

2010 ◽  
Vol 24 (24) ◽  
pp. 4811-4820
Author(s):  
Y. P. ZHANG ◽  
F. S. ZHANG ◽  
Y. GAO ◽  
H. W. CHANG ◽  
G. Q. XIAO

The process of multielectron transfer from a Na 4 cluster induced by highly charged C 6+, C 4+, C 2+ and C + ions is studied using the method of time-dependent density functional theory within the local density approximation combined with the use of pseudopotential. The evolution of dipole moment changes and emitted electrons in Na 4 is obtained and the time-dependent probabilities with various charges are deduced. It is shown that the Na 4 cluster is strongly ionized by C 6+ and that the number of emitted electrons per atom of Na 4 is larger than that of Na 2 under the same condition. One can find that the detailed information of the emitted electrons from Na 4 is different from the same from Na 2, which is possibly related to the difference in structure between the two clusters.


1994 ◽  
Vol 349 ◽  
Author(s):  
Andrew A. Quong ◽  
Mark R. Pederson

ABSTRACTWe use the local-density-approximation to the density-functional theory to determine the axial polarizabilities of fullerene tubules as a function of length and winding topologies. Specifically, we present linear polarizabilities for tubules of composition C12H24, C36H24, C40H20 and C60H24. The size-dependent variation in the dipole-coupled gaps between pairs of occupied and unoccupied levels leads to enhancements in the polarizability per valence electron as the length of the tubule increases. The results are compared to recent densityfunctional based calculations of the linear and nonlinear polarizabilities for fullerene and benzene molecules.


2013 ◽  
Vol 750-752 ◽  
pp. 1141-1145
Author(s):  
Ai Ling Ding ◽  
Feng Li ◽  
Chun Mei Li ◽  
Jing Ao ◽  
Zhi Qian Chen

We investigate the thermodynamic properties of superhard w-BC2N by using ab initio plane-wave pseudopotential density functional theory method within local density approximation (LDA). Through the quasi-harmonic Debye model, we investigate the thermodynamic properties of w-BC2N. The variation of the thermal expansion, the heat capacity and the Gruneisen parameter γ with pressure P and temperature T, and many other thermodynamic parameters of w-BC2N are obtained systematically.


2006 ◽  
Vol 959 ◽  
Author(s):  
Ghouti Merad ◽  
Benali Rerbal ◽  
Hafid Aourag ◽  
Joël Cibert

ABSTRACTAn atomistic modelling based on density functional theory within the framework of the local density approximation is used to show the trends in the energetic properties of single and double defects in CdTe semiconductor, without phase transformation. A systematic study of vacancies, Mn substituting Cd atoms in a supercell structure consisting of 16-atoms is presented. The changes of structural properties and lattice parameters due to the addition of Mn-atomic type defects in CdTe matrix are compared, and the number of vacancies is also determined from the total energy calculations.


2002 ◽  
Vol 16 (11n12) ◽  
pp. 1563-1569 ◽  
Author(s):  
G. PROFETA ◽  
A. CONTINENZA ◽  
F. BERNARDINI ◽  
G. SATTA ◽  
S. MASSIDDA

We report a detailed study of the electronic and dynamical properties of MgB2 , BeB2 and of the AlMgB4 superlattice, within the local density approximation to the density functional theory. On the basis of our results we discuss the superconducting properties of these systems, and point to the high T c in MgB2 as a fortunate combination of events.


2007 ◽  
Vol 14 (03) ◽  
pp. 481-487 ◽  
Author(s):  
I. N. YAKOVKIN ◽  
P. A. DOWBEN

In calculating band structure, the local density approximation and density functional theory are widely popular and do reproduce a lot of the basic physics. Regrettably, without some fine tuning, the local density approximation and density functional theory do not generally get the details of the experimental band structure correct, in particular the band gap in semiconductors and insulators is generally found to be too small when compared with experiment. For experimentalists using commercial packages to calculate the electronic structure of materials, some caution is indicated, as some long-standing problems exist with the local density approximation and density functional theory.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250006
Author(s):  
PRABODH SAHAI SAXENA ◽  
PANKAJ SRIVASTAVA ◽  
ASHWANI Kr. SHRIVASTAVA

We have investigated the lowest-energy structures and electronic properties of the Cu n(n = 2–10) nanoclusters based on density functional theory (DFT) in local density approximation. The total energies, binding energies per atom, bond lengths, HOMO-LUMO gaps and ionization potentials have been calculated. The results are compared well with other theoretical and available experimental results.


Sign in / Sign up

Export Citation Format

Share Document