Modelling of counter current imbibition phenomenon in two-phase fluid flows through fractured heterogeneous porous media under the effect of magnetic field

Author(s):  
Ramakanta Meher ◽  
V. P. Gohil

In this paper, the counter-current imbibition phenomenon is discussed in a fractured heterogeneous porous medium under the effect of magnetic field due to the presence of magnetic fluid particles in injected fluids as well as the effects of inclination, capillarity, relative permeability and the viscosity variation of native fluids on saturation rate and on the recovery rate are considered. The homotopy analysis method is used to derive an expression for finding the saturation profiles and to study the recovery rate of the reservoir with some interesting choices of parameters.

2011 ◽  
Vol 69 (4) ◽  
pp. 842-858 ◽  
Author(s):  
Yibao Li ◽  
Eunok Jung ◽  
Wanho Lee ◽  
Hyun Geun Lee ◽  
Junseok Kim

1998 ◽  
Vol 09 (08) ◽  
pp. 1383-1391 ◽  
Author(s):  
Yu Chen ◽  
Shulong Teng ◽  
Takauki Shukuwa ◽  
Hirotada Ohashi

A model with a volumetric stress tensor added to the Navier–Stokes Equation is used to study two-phase fluid flows. The implementation of such an interface model into the lattice-Boltzmann equation is derived from the continuous Boltzmann BGK equation with an external force term, by using the discrete coordinate method. Numerical simulations are carried out for phase separation and "dam breaking" phenomena.


2021 ◽  
Vol 88 (1-2) ◽  
pp. 125
Author(s):  
R. Madhusudhan ◽  
Achala L. Nargund ◽  
S. B. Sathyanarayana

We analyse the effect of applied magnetic field on the flow of compressible fluid with an adverse pressure gradient. The governing partial differential equations are solved analytically by Homotopy analysis method (HAM) and numerically by finite difference method. A detailed analysis is carried out for different values of the magnetic parameter, where suction/ injection is imposed at the wall. It is also observed that flow separation is seen in boundary layer region for large injection. HAM is a series solution which consists of a convergence parameter h which is estimated numerically by plotting <em>h</em> curve. Singularities of the solution are identified by Pade approximation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
M. Qasim ◽  
S. Noreen

This investigation deals with the Falkner-Skan flow of a Maxwell fluid in the presence of nonuniform applied magnetic fi…eld with heat transfer. Governing problems of flow and heat transfer are solved analytically by employing the homotopy analysis method (HAM). Effects of the involved parameters, namely, the Deborah number, Hartman number, and the Prandtl number, are examined carefully. A comparative study is made with the known numerical solution in a limiting sense and an excellent agreement is noted.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Haobo Hua ◽  
Jaemin Shin ◽  
Junseok Kim

In this paper, we review and compare the level set, phase-field, and immersed boundary methods for incompressible two-phase flows. The models are based on modified Navier–Stokes and interface evolution equations. We present the basic concepts behind these approaches and discuss the advantages and disadvantages of each method. We also present numerical solutions of the three methods and perform characteristic numerical experiments for two-phase fluid flows.


Sign in / Sign up

Export Citation Format

Share Document