Coverage Control of Multiple Unmanned Aerial Vehicles: A Short Review

2018 ◽  
Vol 06 (02) ◽  
pp. 131-144 ◽  
Author(s):  
Sunan Huang ◽  
Rodney Swee Huat Teo ◽  
William Wai Lun Leong ◽  
Niki Martinel ◽  
Gian Luca Forest ◽  
...  

A multiple unmanned aerial vehicle (MUAV) system is a group of vehicles that are designed with the aim to perform some collective behavior. Coverage control is one of the most active research fields in MUAVs. As MUAVs are nowadays widely used in many application areas, the research in the coverage control problem has become a hot point. Although several coverage control methods have been reported, there is a lack of work highlighting the features of these methods. In this paper, we present a survey of the most relevant works in this area, classifying the types of these works and describing the main contributions in their works.

2014 ◽  
Vol 668-669 ◽  
pp. 388-393 ◽  
Author(s):  
Xiao Ming Cheng ◽  
Dong Cao ◽  
Chun Tao Li

As an important part of cooperative control for multiple unmanned aerial vehicles (UAVs), cooperative path planning can get optimal flight path which can satisfy different constraints. Research on cooperative path planning for multiple UAVs is summarized in this paper. Firstly, problem description and constraints are given. Then, solution frameworks and path coordination approaches are summarized. After that, several control methods commonly used in formation of multiple UAVs are introduced respectively. Lastly, possible research directions in the future time are put forward.


Author(s):  
Bruce P. Hunn

The unmanned aerial vehicle represents a significant challenge to its operators since they are literally out of touch with the system they control. Operating from remote sites miles from the vehicle they control, they are isolated by space and time from a direct connection to the machine they operate. While the pilot of a manned aircraft can always receive some type of direct feedback from the machine they operate, even if they lose all their control and display systems, they can still perceive many qualities of that machine's system state merely from their senses. However, in contrast, the unmanned system is based solely on an electronic link connecting the operator to their vehicle. This paper will review the historical trends in remote vehicle operation and discuss state-of-the-art in remote control systems as they apply to single or multiple unmanned aerial vehicles.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Dongliang Qin ◽  
Zhifei Li ◽  
Feng Yang ◽  
Weiping Wang ◽  
Lei He

Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios.


Author(s):  
Shaoming He ◽  
Jiang Wang ◽  
Defu Lin

This paper investigates the problem of robust guidance law design for multiple unmanned aerial vehicles to achieve desired formation pattern for standoff tracking of an unknown ground moving target. The proposed guidance law consists of two main parts: relative range regulation and space angle control. For the first mission, a novel control law is proposed to regulate the relative distance between the unmanned aerial vehicle and the ground moving target to zero asymptotically based on adaptive sliding mode control approach. Considering the discontinuous property of the sign function, which is often used in traditional sliding mode control and will result in high-frequency chattering in the control channel, the proposed controller adopts the continuous saturation function for chattering elimination. Besides the continuous property, convergence to the origin asymptotically can be guaranteed theoretically with the proposed controller, which is quite different from traditional boundary layer technique, where only bounded motion around the sliding manifold can be ensured. For asymptotic stability, it is only required that the lumped uncertainty is bounded, but the upper bound may be unknown by virtue of the designed adaptive methodology. For space angle control, a new multiple leader–follower information architecture is introduced and an acceleration command is then derived for each unmanned aerial vehicle to space them about the loiter circle defined by the first controller. Simulation results with different conditions clearly demonstrate the superiority of the proposed formulation.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Yixiang Lim ◽  
Nichakorn Pongsarkornsathien ◽  
Alessandro Gardi ◽  
Roberto Sabatini ◽  
Trevor Kistan ◽  
...  

Advances in unmanned aircraft systems (UAS) have paved the way for progressively higher levels of intelligence and autonomy, supporting new modes of operation, such as the one-to-many (OTM) concept, where a single human operator is responsible for monitoring and coordinating the tasks of multiple unmanned aerial vehicles (UAVs). This paper presents the development and evaluation of cognitive human-machine interfaces and interactions (CHMI2) supporting adaptive automation in OTM applications. A CHMI2 system comprises a network of neurophysiological sensors and machine-learning based models for inferring user cognitive states, as well as the adaptation engine containing a set of transition logics for control/display functions and discrete autonomy levels. Models of the user’s cognitive states are trained on past performance and neurophysiological data during an offline calibration phase, and subsequently used in the online adaptation phase for real-time inference of these cognitive states. To investigate adaptive automation in OTM applications, a scenario involving bushfire detection was developed where a single human operator is responsible for tasking multiple UAV platforms to search for and localize bushfires over a wide area. We present the architecture and design of the UAS simulation environment that was developed, together with various human-machine interface (HMI) formats and functions, to evaluate the CHMI2 system’s feasibility through human-in-the-loop (HITL) experiments. The CHMI2 module was subsequently integrated into the simulation environment, providing the sensing, inference, and adaptation capabilities needed to realise adaptive automation. HITL experiments were performed to verify the CHMI2 module’s functionalities in the offline calibration and online adaptation phases. In particular, results from the online adaptation phase showed that the system was able to support real-time inference and human-machine interface and interaction (HMI2) adaptation. However, the accuracy of the inferred workload was variable across the different participants (with a root mean squared error (RMSE) ranging from 0.2 to 0.6), partly due to the reduced number of neurophysiological features available as real-time inputs and also due to limited training stages in the offline calibration phase. To improve the performance of the system, future work will investigate the use of alternative machine learning techniques, additional neurophysiological input features, and a more extensive training stage.


Sign in / Sign up

Export Citation Format

Share Document