Deep learning neural network for the prediction of asian tiger stock markets

Author(s):  
Kok-Leong Yap ◽  
Wee-Yeap Lau ◽  
Izlin Ismail

Motivated by the recent interest of stock traders and investors towards the deep learning neural network, this study employs the deep learning neural networks, namely, multilayer perceptron, long short-term memory, and convolutional neural network, to forecast the Asian Tiger stock markets. One of the challenges to using deep learning neural networks is to select the input variable. We propose to use multiple linear regression to select the input variable that is significant to the output. Besides, we construct a regional stock market index as a significant input to forecast the Asian Tiger stock markets. A comparison study on the forecasting model shows that the deep learning model can be used as a decision-making system that assists investors to predict short-term movement and trends of stock prices.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240663
Author(s):  
Beibei Ren

With the rapid development of big data and deep learning, breakthroughs have been made in phonetic and textual research, the two fundamental attributes of language. Language is an essential medium of information exchange in teaching activity. The aim is to promote the transformation of the training mode and content of translation major and the application of the translation service industry in various fields. Based on previous research, the SCN-LSTM (Skip Convolutional Network and Long Short Term Memory) translation model of deep learning neural network is constructed by learning and training the real dataset and the public PTB (Penn Treebank Dataset). The feasibility of the model’s performance, translation quality, and adaptability in practical teaching is analyzed to provide a theoretical basis for the research and application of the SCN-LSTM translation model in English teaching. The results show that the capability of the neural network for translation teaching is nearly one times higher than that of the traditional N-tuple translation model, and the fusion model performs much better than the single model, translation quality, and teaching effect. To be specific, the accuracy of the SCN-LSTM translation model based on deep learning neural network is 95.21%, the degree of translation confusion is reduced by 39.21% compared with that of the LSTM (Long Short Term Memory) model, and the adaptability is 0.4 times that of the N-tuple model. With the highest level of satisfaction in practical teaching evaluation, the SCN-LSTM translation model has achieved a favorable effect on the translation teaching of the English major. In summary, the performance and quality of the translation model are improved significantly by learning the language characteristics in translations by teachers and students, providing ideas for applying machine translation in professional translation teaching.


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ching-Chun Chang

Deep learning has brought about a phenomenal paradigm shift in digital steganography. However, there is as yet no consensus on the use of deep neural networks in reversible steganography, a class of steganographic methods that permits the distortion caused by message embedding to be removed. The underdevelopment of the field of reversible steganography with deep learning can be attributed to the perception that perfect reversal of steganographic distortion seems scarcely achievable, due to the lack of transparency and interpretability of neural networks. Rather than employing neural networks in the coding module of a reversible steganographic scheme, we instead apply them to an analytics module that exploits data redundancy to maximise steganographic capacity. State-of-the-art reversible steganographic schemes for digital images are based primarily on a histogram-shifting method in which the analytics module is often modelled as a pixel intensity predictor. In this paper, we propose to refine the prior estimation from a conventional linear predictor through a neural network model. The refinement can be to some extent viewed as a low-level vision task (e.g., noise reduction and super-resolution imaging). In this way, we explore a leading-edge neuroscience-inspired low-level vision model based on long short-term memory with a brief discussion of its biological plausibility. Experimental results demonstrated a significant boost contributed by the neural network model in terms of prediction accuracy and steganographic rate-distortion performance.


2021 ◽  
Vol 7 (2) ◽  
pp. 113-121
Author(s):  
Firman Pradana Rachman

Setiap orang mempunyai pendapat atau opini terhadap suatu produk, tokoh masyarakat, atau pun sebuah kebijakan pemerintah yang tersebar di media sosial. Pengolahan data opini itu di sebut dengan sentiment analysis. Dalam pengolahan data opini yang besar tersebut tidak hanya cukup menggunakan machine learning, namun bisa juga menggunakan deep learning yang di kombinasikan dengan teknik NLP (Natural Languange Processing). Penelitian ini membandingkan beberapa model deep learning seperti CNN (Convolutional Neural Network), RNN (Recurrent Neural Networks), LSTM (Long Short-Term Memory) dan beberapa variannya untuk mengolah data sentiment analysis dari review produk amazon dan yelp.


2020 ◽  
Vol 25 (1) ◽  
pp. 57-61
Author(s):  
Falah Obaid ◽  
Amin Babadi ◽  
Ahmad Yoosofan

AbstractDeep learning is a new branch of machine learning, which is widely used by researchers in a lot of artificial intelligence applications, including signal processing and computer vision. The present research investigates the use of deep learning to solve the hand gesture recognition (HGR) problem and proposes two models using deep learning architecture. The first model comprises a convolutional neural network (CNN) and a recurrent neural network with a long short-term memory (RNN-LSTM). The accuracy of model achieves up to 82 % when fed by colour channel, and 89 % when fed by depth channel. The second model comprises two parallel convolutional neural networks, which are merged by a merge layer, and a recurrent neural network with a long short-term memory fed by RGB-D. The accuracy of the latest model achieves up to 93 %.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hangxia Zhou ◽  
Qian Liu ◽  
Ke Yan ◽  
Yang Du

Short-term photovoltaic (PV) energy generation forecasting models are important, stabilizing the power integration between the PV and the smart grid for artificial intelligence- (AI-) driven internet of things (IoT) modeling of smart cities. With the recent development of AI and IoT technologies, it is possible for deep learning techniques to achieve more accurate energy generation forecasting results for the PV systems. Difficulties exist for the traditional PV energy generation forecasting method considering external feature variables, such as the seasonality. In this study, we propose a hybrid deep learning method that combines the clustering techniques, convolutional neural network (CNN), long short-term memory (LSTM), and attention mechanism with the wireless sensor network to overcome the existing difficulties of the PV energy generation forecasting problem. The overall proposed method is divided into three stages, namely, clustering, training, and forecasting. In the clustering stage, correlation analysis and self-organizing mapping are employed to select the highest relevant factors in historical data. In the training stage, a convolutional neural network, long short-term memory neural network, and attention mechanism are combined to construct a hybrid deep learning model to perform the forecasting task. In the testing stage, the most appropriate training model is selected based on the month of the testing data. The experimental results showed significantly higher prediction accuracy rates for all time intervals compared to existing methods, including traditional artificial neural networks, long short-term memory neural networks, and an algorithm combining long short-term memory neural network and attention mechanism.


2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Sign in / Sign up

Export Citation Format

Share Document