High Activity and Easily Hydrolyzable Sulfonylurea Inhibitor Design Based on Density Functional Theory Calculations

Author(s):  
Sitong Yan ◽  
Xiaoxiong Lin ◽  
Zhenhao Wen ◽  
Junping Xiao ◽  
Huangbing Liang ◽  
...  

To find new sulfonylurea inhibitors with high efficacy and fast hydrolysis degradation rate, a few compounds were first designed based on the commercial product Chlorimuron-Ethyl (CE) by estimating the binding interaction between the inhibitor and the Acetohydroxyacid Synthase (AHAS) using the quantum mechanical approach. Meanwhile, the activation energy barriers of hydrolysis for the sulfonylurea inhibitors with the amino and nitro groups onto para position of the benzene ring were calculated. Based on the calculated binding interaction energy and hydrolysis energy barrier, six new sulfonylurea inhibitors I1–I6 were designed and synthesized. By measuring the half-lives through hydrolysis degradation assay, it was indicated that the compounds I1–I3 with the introduction of an amino group at the fourth position of benzene ring show much faster degradation rate than those compounds with nitro groups, which is in a good agreement with the calculated results for hydrolysis barrier. The herbicide activity tests show that the compounds I1 and I2 remained excellent herbicidal activity on both broadleaf weeds with soil treatment at a concentration about 150[Formula: see text]mg/l. Due to their short half-lives of chemical hydrolysis and high herbicidal activities, compounds I1 and I2 could be potential herbicidal candidates in the future, which are helpful for the sustainable development of the environment and ecology.

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 183
Author(s):  
Robert Dobosz ◽  
Jan Mućko ◽  
Ryszard Gawinecki

Gibbs free energies, based on DFT (Density Functional Theory) calculations, prove that enaminone (2-(anilinemethylidene)cyclohexane-1,3-dione) and ketamine (2-[(phenylimino)-methyl]cyclohexane-1,3-dione) are the most and least stable tautomeric forms of the studied systems, respectively. 1H and 13C NMR spectra prove that 2-(anilinemethylidene)cyclohexane-1,3-diones are the only tautomeric species present in dimethylsulfoxide solution (a very weak signal can be seen only for the p-methoxy derivatives). The zwitterionic character of these enaminones is strengthened by naphthoannulation and by the insertion of the electron-withdrawing substituent into the benzene ring (the latter weakens the intramolecular hydrogen bond in the compound). Substituent and naphtoannulation have no effect on the stability of the studied tautomers. Slight twisting of the benzene ring, with respect to the CArNC plane (seen in the crystalline state), was proven to also take place in vacuum and in solution.


2019 ◽  
Author(s):  
Yan Wang ◽  
Sagar Udyavara ◽  
Matthew Neurock ◽  
C. Daniel Frisbie

<div> <div> <div> <p> </p><div> <div> <div> <p>Electrocatalytic activity for hydrogen evolution at monolayer MoS2 electrodes can be enhanced by the application of an electric field normal to the electrode plane. The electric field is produced by a gate electrode lying underneath the MoS2 and separated from it by a dielectric. Application of a voltage to the back-side gate electrode while sweeping the MoS2 electrochemical potential in a conventional manner in 0.5 M H2SO4 results in up to a 140-mV reduction in overpotential for hydrogen evolution at current densities of 50 mA/cm2. Tafel analysis indicates that the exchange current density is correspondingly improved by a factor of 4 to 0.1 mA/cm2 as gate voltage is increased. Density functional theory calculations support a mechanism in which the higher hydrogen evolution activity is caused by gate-induced electronic charge on Mo metal centers adjacent the S vacancies (the active sites), leading to enhanced Mo-H bond strengths. Overall, our findings indicate that the back-gated working electrode architecture is a convenient and versatile platform for investigating the connection between tunable electronic charge at active sites and overpotential for electrocatalytic processes on ultrathin electrode materials.</p></div></div></div><br><p></p></div></div></div>


2019 ◽  
Author(s):  
Theodosios Famprikis ◽  
James Dawson ◽  
François Fauth ◽  
Emmanuelle Suard ◽  
Benoit Fleutot ◽  
...  

<div> <p>Solid electrolytes are crucial for next‑generation solid‑state batteries and Na<sub>3</sub>PS<sub>4</sub> is one of the most promising Na<sup>+</sup> conductors for such applications. At present, two phases of Na<sub>3</sub>PS<sub>4</sub> have been identified and it had been thought to melt above 500 °C. In contrast, we show that it remains solid above this temperature and transforms into a third polymorph, γ, exhibiting superionic behavior. We propose an orthorhombic crystal structure for γ‑Na<sub>3</sub>PS<sub>4</sub> based on scattering density analysis of diffraction data and density functional theory calculations. We show that the Na<sup>+</sup> superionic behavior is associated with rotational motion of the thiophosphate polyanions pointing to a rotor phase, based on <i>ab initio</i> molecular dynamics simulations and supported by high‑temperature synchrotron and neutron diffraction, thermal analysis and impedance spectroscopy. These findings are of importance for the development of new polyanion‑based solid electrolytes.</p> </div>


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Anshuman Kumar ◽  
Reinhard Schweitzer-Stenner ◽  
Bryan Wong

In this work, we carry out new time-dependent density functional theory calculations on the cationic tripeptide GAG in implicit and explicit water to determine the transitions that give rise to the observed CD signals of polyproline II and β-strand conformations. Our results reveal a plethora of electronic transitions that are governed by configurational interactions between multiple molecular orbital transitions of comparable energy. We also show that reproducing the CD spectra of polyproline II and β-strand conformations requires the explicit consideration of water molecules. The structure dependence of delocalized occupied orbitals contributes to the experimentally-observed invalidation of Flory’s isolated pair hypothesis.


2019 ◽  
Author(s):  
Anshuman Kumar ◽  
Reinhard Schweitzer-Stenner ◽  
Bryan Wong

In this work, we carry out new time-dependent density functional theory calculations on the cationic tripeptide GAG in implicit and explicit water to determine the transitions that give rise to the observed CD signals of polyproline II and β-strand conformations. Our results reveal a plethora of electronic transitions that are governed by configurational interactions between multiple molecular orbital transitions of comparable energy. We also show that reproducing the CD spectra of polyproline II and β-strand conformations requires the explicit consideration of water molecules. The structure dependence of delocalized occupied orbitals contributes to the experimentally-observed invalidation of Flory’s isolated pair hypothesis.


2019 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

<div> <div> <div> <div><p>Developing active and stable oxygen evolution catalysts is a key to enabling various future energy technologies and the state-of-the-art catalyst is Ir-containing oxide materials. Understanding oxygen chemistry on oxide materials is significantly more complicated than studying transition metal catalysts for two reasons: the most stable surface coverage under reaction conditions is extremely important but difficult to understand without many detailed calculations, and there are many possible active sites and configurations on O* or OH* covered surfaces. We have developed an automated and high-throughput approach to solve this problem and predict OER overpotentials for arbitrary oxide surfaces. We demonstrate this for a number of previously-unstudied IrO2 and IrO3 polymorphs and their facets. We discovered that low index surfaces of IrO2 other than rutile (110) are more active than the most stable rutile (110), and we identified promising active sites of IrO2 and IrO3 that outperform rutile (110) by 0.2 V in theoretical overpotential. Based on findings from DFT calculations, we pro- vide catalyst design strategies to improve catalytic activity of Ir based catalysts and demonstrate a machine learning model capable of predicting surface coverages and site activity. This work highlights the importance of investigating unexplored chemical space to design promising catalysts.<br></p></div></div></div></div><div><div><div> </div> </div> </div>


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


Sign in / Sign up

Export Citation Format

Share Document