A Large Barrier Height Schottky Contact between Amorphous Si-Ge-B and GaAs

1983 ◽  
Vol 22 (Part 2, No. 11) ◽  
pp. L709-L711 ◽  
Author(s):  
Masamitsu Suzuki ◽  
Katsumi Murase ◽  
Kazuyoshi Asai ◽  
Katsuhiko Kurumada
1986 ◽  
Vol 77 ◽  
Author(s):  
T. Ogino ◽  
M. Sakaue ◽  
Y. Amemiya

ABSTRACTA high Schottky barrier contact is formed when amorphous Si-P solid solution film and p-type Si are brought into contact. Amorphous Si-P films were deposited by thermal decomposition of a Si2H6-PH3 mixture at 500°C. It was found that conductivity increases rapidly when PH3/Si2H6, is increased from 0.2 to 2. When PH3/i2H6 = 2, conductivity is 0.15 S/cm, and the dominant conduction mechanism is variable-range hopping. Barrier height of amorphous Si-P/p-type Si Schottky contact is estimated to be 0.8 – 0.85 V. This value exceeds the barrier height formed by any normal metal.


2007 ◽  
Vol 101 (5) ◽  
pp. 053705 ◽  
Author(s):  
Yu-Long Jiang ◽  
Jia Luo ◽  
Ye Yao ◽  
Fang Lu ◽  
Guo-Ping Ru ◽  
...  

2014 ◽  
Vol 778-780 ◽  
pp. 1142-1145 ◽  
Author(s):  
Filippo Giannazzo ◽  
Stefan Hertel ◽  
Andreas Albert ◽  
Antonino La Magna ◽  
Fabrizio Roccaforte ◽  
...  

Epitaxial graphene fabricated by thermal decomposition of the Si-face of silicon carbide (SiC) forms a defined interface to the SiC substrate. As-grown monolayer graphene with buffer layer establishes an ohmic interface even to low-doped (e. g. [N] ≈ 1015 cm-3) SiC, and a specific contact resistance as low as ρC = 5.9×10-6 Ωcm2 can be achieved on highly n-doped SiC layers. After hydrogen intercalation of monolayer graphene, the so-called quasi-freestanding graphene forms a Schottky contact to n-type SiC with a Schottky barrier height of 1.5 eV as determined from C-V analysis and core level photoelectron spectroscopy (XPS). This value, however, strongly deviates from the respective value of less than 1 eV determined from I-V measurements. It was found from conductive atomic force microscopy (C-AFM) that the Schottky barrier is locally lowered on other crystal facets located at substrate step edges. For very small Schottky contacts, the barrier height extracted from I-V curves approaches the value of 1.5 eV from C-V and XPS.


1991 ◽  
Vol 30 (Part 1, No. 5) ◽  
pp. 906-913 ◽  
Author(s):  
Heng-Yong Nie ◽  
Yasuo Nannichi

2015 ◽  
Vol 821-823 ◽  
pp. 436-439 ◽  
Author(s):  
Razvan Pascu ◽  
Gheorghe Pristavu ◽  
Gheorghe Brezeanu ◽  
Florin Draghici ◽  
Marian Badila ◽  
...  

The electrical behavior and stability of a temperature sensor based on 4H-SiC Schottky diodes using Ni2Si as Schottky contact, are investigated. The ideality factor and the barrier height were found to be strongly dependent on the post-annealing temperature of the Ni contact (which lead to the formation of Ni2Si). A nearly ideal Schottky device, with the barrier height approaching the high value of1.7eV, and a slight temperature dependence, was obtained after an annealing atTA=800°C.This high barrier height proves that Ni2Si is suitable as Schottky contact for temperature sensors, able to reliably operate up to450°C. Sensor sensitivity levels between1.00mV/°Cand2.70 mV/°Chave been achieved.


Author(s):  
A. A. Nawawi ◽  
S.M. Sultan ◽  
S.F.A. Rahmah ◽  
P.I. Khalid ◽  
S.H. Pu

An investigation on the effect of the reverse biased operation of NCG/p-Si Schottky contact during methane gas exposure at room temperature has been presented. The experimental results show the larger current shift at the reverse bias operation, compared to the forward bias by exposing to methane gas. This can be attributed to the adsorption of methane gas into the metal surface layer and produces a negative charge at the junction, thus reduces the barrier height of the device. The reverse barrier height was calculated under the reverse bias condition, demonstrated the value decreased from 0.58-0.53eV towards a higher concentration of methane gas. The Schottky junction also affected by the increase in a free carrier when exposure to the reducing gas such as methane. Raman spectra are reported to be detected at G, D and 2D band with the grain size 1.88nm to exhibit single crystallite graphite properties. The results correlate well with the 3D AFM scans reveal the RMS surface roughness of 1.1 to 2.8nm.


Sign in / Sign up

Export Citation Format

Share Document