Radiation Level Measured by a Portable Geiger-Müller Counter at the Altitude of Commercial Air Routes

1995 ◽  
Vol 34 (Part 1, No. 8A) ◽  
pp. 4276-4277
Author(s):  
Takashi Araki
2020 ◽  
Vol 6 (2) ◽  
pp. 34-40
Author(s):  
G. B. Dhami ◽  
M. R. Bhatt ◽  
J. Khadayat ◽  
B. D. Joshi

We have reported the background radiation of urban and some other rural places of Kanchanpur district, Nepal. A simple portable Geiger Muller counter was used to quantify the level of overall background radiation by collecting data of different forty seven (including six urban and forty one rural places) places within the district. Our study reveals that the background radiation level of the study district is below the risk level. The maximum background count values 33.00±4.47 (Mahakali Zonal Hospital), 33.93 ± 1.16 (Mahakali School, Mahakali -01) and 31.30±3.97 CPM (Gha gaon) have been reported which is below the risk level. The observed values of radiation counts at all the sample places indicate that Kanchanpur district is radiation risk free.


2017 ◽  
pp. 92-95
Author(s):  
T Timilsina ◽  
K. R. Poudel ◽  
P. R. Poudel

This study presents general exposure of background radiation to the people living or visiting nine places of Syangja district. A portable GM counter was used to quantify the total radiation at those places. The findings of this study show variation of radiation level at different places. Comparatively large values of radiation counts are observed at high altitude places (Gurung Dada: 70.23 cpm and Pokhari Dada: 64.77 cpm). The value of radiation count inside room is comparatively larger than that at outside room for these places. Moreover, small value of radiation count is observed at river side (Bank of Aandhikhola river: 21.63 cpm). Little large values are observed near Saligram stones and ancient statue than at other regions of one historical/religious place. Hence, results show fluctuations of background radiation level for different places. Some places have comparatively large value of radiation count while some places have comparatively small value. But there is no any abnormal value of radiation counts for all sample places. So there is, generally, no significant risk of public exposure to the background radiation for sample places.The Himalayan Physics Vol. 6 & 7, April 2017 (92-95)


Author(s):  
Roger H. Stuewer

Frédéric Joliot discovered artificial radioactivity on January 11, 1934, when he bombarded aluminum with polonium alpha particles and produced a radioactive isotope of phosphorus that decayed by emitting a positron. He detected it with a Geiger–Müller counter that Wolfgang Gentner had constructed for him. Two months later, Enrico Fermi, motivated in part by an insight of his first assistant, Gian Carlo Wick, decided to see if neutrons also could produce artificial radioactivity. The transformation of a neutron into a proton in a nucleus should create an electron, so to increase their number and hence the probability of creating an electron, he bombarded various elements with intense sources of neutrons, and on March 20, 1934, with aluminum he observed the created electrons and thereby discovered neutron-induced artificial radioactivity. Less than four months later, Marie Curie died on July 4, 1934, at age sixty-six.


Nature ◽  
1932 ◽  
Vol 130 (3288) ◽  
pp. 699-699 ◽  
Author(s):  
BRUNO ROSSI

Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1369-1378 ◽  
Author(s):  
Georg F. Schwarz ◽  
Ladislaus Rybach ◽  
Emile E. Klingelé

Airborne radiometric surveys are finding increasingly wider applications in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma‐ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose‐rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Gösgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1859
Author(s):  
Bo Zhong ◽  
Yingbo Ma ◽  
Aixia Yang ◽  
Junjun Wu

Fengyun-4A (FY-4A) is the first satellite of the Chinese second-generation geostationary orbit meteorological satellites (FY-4). The Advanced Geostationary Radiation Imager (AGRI), onboard FY-4A does not load with high-precision calibration facility in visible and near infrared (VNIR) channel. As a consequence, it is necessary to comprehensively evaluate its radiometric performance and quantitatively describe the attenuation while using its VNIR data. In this paper, the radiometric performance at VNIR channels of FY-4A/AGRI is evaluated based on Aqua/MODIS data using the deep convective cloud (DCC) target. In order to reduce the influence of view angle and spectral response difference, the bi-directional reflectance distribution function (BRDF) correction and spectral matching have been performed. The evaluation result shows the radiometric performance of FY-4A/AGRI: (1) is less stable and with obvious fluctuations; (2) has a lower radiation level because of 24.99% lower compared with Aqua/MODIS; 3) has a high attenuation with 9.11% total attenuation over 2 years and 4.0% average annual attenuation rate. After the evaluation, relative radiometric normalization between AGRI and MODIS in VNIR channel is performed and the procedure is proved effective. This paper proposed a more reliable reference for the quantitative applications of FY-4A data.


Author(s):  
A.A. Ilyin ◽  
◽  
K.A. Shmirko ◽  
S.S. Golik ◽  
D.Yu. Proschenko ◽  
...  

A numerical model describing the dynamics of plasma particle density upon filamentation of femtosecond radiation in the air is presented. The simulation results are in good agreement with the experimental data. The pumping processes of the N2 and N2+ radiative levels are investigated. The model predicts a sharp drop in electron temperature and density within 1 ns. For the first positive nitrogen system, an excess of the population of the upper radiation level over the population of the lower one is observed for 550 ps.


Sign in / Sign up

Export Citation Format

Share Document