Near-Field Optical Recording by Reflection-Mode Near-Field Scanning Optical Microscope: Submicron-Sized Marks and Their Thermodynamic Stability

2000 ◽  
Vol 39 (Part 1, No. 2B) ◽  
pp. 984-985 ◽  
Author(s):  
Myong R. Kim ◽  
June-Hyoung Park ◽  
Wonho Jhe
Author(s):  
Eric X. Jin ◽  
Xianfan Xu

Ridge apertures in various shapes have attracted extensive studies which showed their potential capabilities in realizing both enhanced transmission and nanoscale optical resolution, therefore, enabling ultrahigh density near-field optical recording. In this work, the optical near field distributions of an H-shaped ridge aperture and comparable regular apertures made in aluminum film are experimentally investigated using a home-made near-field scanning optical microscope. With a sub-100 nm aperture probe, the full-width half-magnitude (FWHM) near-field spot of the H aperture is measured as 106 nm by 80 nm, comparable to the gap size but substantially smaller than that obtained from a square aperture with the same area. The elongated near-field light spot in the direction across the ridges is due to the scattering of the transmitted light on the edges based on results of numerical calculations.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 623-627 ◽  
Author(s):  
M. HARIDAS ◽  
L. N. TRIPATHI ◽  
J. K. BASU

Effect of shape and density on the energy transfer between metallic nanoparticles and semi conducting nanostructures was studied by observing the photoluminescence spectra using near field scanning optical microscope. The monolayers of gold nanoparticles, CdSe nanorods and composite with different number ratios were prepared using Langmuir Blodgett method. The spectra collected from the films with different number ratios of CdSe and gold shows a systematic variation of peak position and intensity as a function of number density of CdSe . The photoluminescence spectra collected from composite monolayer is blue shifted compared to the spectra from CdSe nanorods monolayer. Further we observed a blue shift in peak position and reduction emission intensity with respect to increase in the fraction of gold nanoparticles and surface density. We have provided explanation for the observed behavior in terms of strong exciton–plasmon interactions in the compact hybrid monolayers.


Nano Letters ◽  
2004 ◽  
Vol 4 (2) ◽  
pp. 219-223 ◽  
Author(s):  
Christopher R. McNeill ◽  
Holger Frohne ◽  
John L. Holdsworth ◽  
John E. Furst ◽  
Bruce V. King ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document