Amorphous Silicon Film Deposition by Low Temperature Catalytic Chemical Vapor Deposition (<150 °C) and Laser Crystallization for Polycrystalline Silicon Thin-Film Transistor Application

2006 ◽  
Vol 45 (No. 8) ◽  
pp. L227-L229 ◽  
Author(s):  
Sung-Hyun Lee ◽  
Wan-Shick Hong ◽  
Jong-Man Kim ◽  
Hyuck Lim ◽  
Kuyng-Bae Park ◽  
...  
2011 ◽  
Vol 189-193 ◽  
pp. 2032-2036 ◽  
Author(s):  
Zhi Jian Wang ◽  
Xiao Feng Shang

Taking Silicon tetrachloride (SiCl4) and hydrogen (H2) as the reaction gas, by the method of plasma-enhanced chemical vapor deposition (PECVD), this paper simulates the deposition process of polycrystalline silicon thin film on the glass substrates in the software FLUENT. Three dimensional physical model and mathematics model of the simulated area are established. The reaction mechanism including main reaction equation and several side equations is given during the simulation process. The simulation results predict the velocity field, temperature distribution, and concentration profiles in the PECVD reactor. The simulation results show that the deposition rate of silicon distribution is even along the circumference direction, and gradually reduced along the radius direction. The deposition rate is about 0.005kg/(m2•s) at the center. The simulated result is basically consistent with the practical one. It means that numerical simulation method to predict deposition process is feasible and the results are reliable in PECVD system.


1998 ◽  
Vol 507 ◽  
Author(s):  
Yue Kuo ◽  
K. Latzko

ABSTRACTPlasma enhanced chemical vapor deposition of phosphorus-doped n+ silicon film over a wide range of process conditions has been studied. The deposited films were characterized with SIMS, Raman, and XRD. An unusually abrupt change of resistivity over a small SiH4(1% PH3) flow rate has been observed and was correlated to the variation of the film's morphology from amorphous to micrycrystalline. The grains are less than 50 Å in size and has strong <111> orientation. Amorphous silicon thin film transistors with microcrystalline n+ source and drain contacts have consistently good device characteristics. However, the contact resistance is comparable to the channel resistance when the channel length approaches 1 micrometer.


1990 ◽  
Vol 182 ◽  
Author(s):  
B.-C. Hseih ◽  
G.A. Hawkins ◽  
S. Ashok

AbstractWe report on the characteristics of polycrystalline silicon (polysilicon) thin film transistors (TFTs) fabricated with low temperature crystallized LPCVD amorphous silicon film as an active layer and plasma enhanced chemical vapor deposition (PECVD) SiO2 as a gate insulator. High performance transistor characteristics are achieved, even though no process temperature exceeds 600°C. No threshold drift has been observed. As a result, these devices are highly suitable for application to image scanners as well as flat panel displays.


2000 ◽  
Vol 621 ◽  
Author(s):  
D. Toet ◽  
T.W. Sigmon ◽  
T. Takehara ◽  
C.C. Tsai ◽  
W.R. Harshbarger

ABSTRACTPolycrystalline silicon thin film transistors (TFTs) were fabricated using laser crystallization of thin amorphous Si films grown by plasma-enhanced chemical vapor deposition. The films were exposed to a scanned XeCl excimer laser beam at 350 mJ/cm2. At this fluence the Si film com- pletely melted and crystallized in the form of uniformly distributed grains with an average size of 39 nm. One of the films was then subjected to a low fluence laser scan (250 mJ/cm2), which re- sulted in the melting of the top part of the film and lead to an increase in grain size. The TFTs fabricated without the partial melt method had good electrical properties and uniformities. The partial melt method lead to substantial improvements in most device characteristics, while the uniformity remained good.


Sign in / Sign up

Export Citation Format

Share Document