scholarly journals Big Bang as a Critical Point

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Jakub Mielczarek

This article addresses the issue of possible gravitational phase transitions in the early universe. We suggest that a second-order phase transition observed in the Causal Dynamical Triangulations approach to quantum gravity may have a cosmological relevance. The phase transition interpolates between a nongeometric crumpled phase of gravity and an extended phase with classical properties. Transition of this kind has been postulated earlier in the context of geometrogenesis in the Quantum Graphity approach to quantum gravity. We show that critical behavior may also be associated with a signature change in Loop Quantum Cosmology, which occurs as a result of quantum deformation of the hypersurface deformation algebra. In the considered cases, classical space-time originates at the critical point associated with a second-order phase transition. Relation between the gravitational phase transitions and the corresponding change of symmetry is underlined.

1992 ◽  
Vol 07 (12) ◽  
pp. 1039-1061 ◽  
Author(s):  
M.E. AGISHTEIN ◽  
A.A. MIGDAL

Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. We studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: we reached about 5×104 simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. We varied the gravitational constant, and we found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). We studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths. The heavy propagator geodesic appeared to be much smoother, so that the scaling laws were found, corresponding to finite fractal dimensions: D+~2.3 in the gravity phase and D−~4.6 in the antigravity phase. Similar, but somewhat lower numbers were obtained from the heat kernel singularity. The influence of the αR2 terms in 2, 3 and 4 dimensions is discussed.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550029 ◽  
Author(s):  
Mohammad Bagher Jahani Poshteh ◽  
Behrouz Mirza ◽  
Fatemeh Oboudiat

In this paper, we generalize Ehrenfest's equations to systems having two work terms, i.e. systems with three degrees of freedom. For black holes with two work terms we obtain nine equations instead of two to be satisfied at the critical point of a second-order phase transition. We finally generalize this method to a system with an arbitrary number of degrees of freedom and found there is [Formula: see text] equations to be satisfied at the point of a second-order phase transition where N is number of work terms in the first law of thermodynamics.


1994 ◽  
Vol 09 (27) ◽  
pp. 2527-2541 ◽  
Author(s):  
J. AMBJØRN ◽  
J. JURKIEWICZ ◽  
S. BILKE ◽  
Z. BURDA ◽  
B. PETERSSON

Employing Monte-Carlo simulation we study the phase diagram of a Z2 gauge field coupled to simplicial quantum gravity. We localize a critical point of the model where both the matter and gravity sectors have a second order phase transition. We found the value of the critical index γg=0.16(4) of the gravity susceptibility at the critical point.


Author(s):  
Dmitrii Andrianov ◽  
◽  
Petr Simonov ◽  

A review of theoretical and applied results obtained in the framework of the scientific direction in econophysics at the Department of information systems and mathematical methods in economics is given. The first part gives the concept of a financial bubble and methods for finding them. At the beginning of the article, the development of econophysics is given. Therefore, using the research of physicists as a model, econophysics should begin its research not from the upper floors of an economic building (in the form of financial markets, distribution of returns on financial assets, etc.), but from its fundamental foundations or, in the words of physicists, from elementary economic objects and forms of their movement (labor, its productivity, etc.). Only in this way can econophysics find its subject of study and become a "new form of economic theory". Further, the main prerequisites of financial bubble models in the market are considered: the principle of the absence of arbitrage opportunities, the existence of rational agents, a risk-driven model, and a price-driven model. A well-known nonlinear LPPL model (log periodic power law model) was proposed. In the works of V.O. Arbuzov, it was proposed to use procedures for selecting models. Namely, basic selection, "stationarity" filtering, and spectral analysis were introduced. The results of the model were presented in the works of D. Sornette and his students. The second part gives the concept of percolation and its application in Economics. We will consider a mathematical model proposed by J.P. Bouchaud, D. Stauffer, and D. Sornette that recreates the behavior of an agent in the market and their interaction, geometrically describing a phase transition of the second kind. In this model, the price of an asset in a single time interval changes in proportion to the difference between supply and demand in this market. The results are published in the works of A.A. Byachkova, B.I. Myznikova and A.A. Simonov. There are two types of phase transition: the first and second kind. During the phase transition of the first kind, the most important, primary extensive parameters change abruptly: the specific volume, the amount of stored internal energy, the concentration of components, and other indicators. It should be noted that this refers to an abrupt change in these values with changes in temperature, pressure, and not a sudden change in time. The most common examples of phase transitions of the first kind are: melting and crystallization, evaporation and condensation. During the second kind of phase transition, the density and internal energy do not change. The jump is experienced by their temperature and pressure derivatives: heat capacity, coefficient of thermal expansion, or various susceptibilities. Phase transitions of the second kind occur when the symmetry of the structure of a substance changes: it can completely disappear or decrease. For quantitative characterization of symmetry in a second-order phase transition, an order parameter is introduced that runs through non-zero values in a phase with greater symmetry, and is identically equal to zero in an unordered phase. Thus, we can consider percolation as a phase transition of the second kind, by analogy with the transition of paramagnets to the state of ferromagnets. The percolation threshold or critical concentration separates two phases of the percolation grid: in one phase there are finite clusters, in the other phase there is one infinite cluster. The key situation to study is the moment of formation of an infinite cluster on the percolation grid, since this means the collapse of the market, when the overwhelming part of agents for this market has a similar opinion about their actions to buy or sell an asset. The main characteristics of the process are the threshold probability of market collapse, as well as the empirical distribution function of price changes in this market. Keywords: econophysics, behavior of agents in the market, market crash, second-order phase transition, percolation theory, model calibration, agent model calibration, percolation gratings, gradient percolation model, percolation threshold, clusters, fractal dimensions, phase transitions of the first and second kind.


Sign in / Sign up

Export Citation Format

Share Document