scholarly journals Excitation of the Free Oscillation of a Schwarzschild Black Hole by the Gravitational Waves from a Scattered Test Particle

1984 ◽  
Vol 71 (4) ◽  
pp. 738-751 ◽  
Author(s):  
K.-i. Oohara
2009 ◽  
Vol 24 (18) ◽  
pp. 1443-1451 ◽  
Author(s):  
CARLOS LEIVA ◽  
JOEL SAAVEDRA ◽  
JOSÉ VILLANUEVA

In this paper we study the geodesic structure of the Schwarzschild black hole in rainbow gravity analyzing the behavior of null and time-like geodesic. We find that the structure of the geodesics essentially does not change when the semiclassical effects are included. However, we can distinguish different scenarios if we take into account the effects of rainbow gravity. Depending on the type of rainbow functions under consideration, inertial and external observers see very different situations in radial and non-radial motion of a test particle.


1989 ◽  
Vol 67 (10) ◽  
pp. 971-973
Author(s):  
K. D. Krori ◽  
J. C. Sarmah

In this paper, we present a study of the stable polar trajectories ([Formula: see text] = constant plane) of neutral test particles around a Schwarzschild black hole embedded in a magnetic field. We also show how the nature of these trajectories changes with the variation in the angular momentum of the test particle and the magnetic field parameter.


2016 ◽  
Vol 31 (17) ◽  
pp. 1650106 ◽  
Author(s):  
Yong-Wan Kim ◽  
Young-Jai Park

We obtain a (5+1)-dimensional global flat embedding of modified Schwarzschild black hole in rainbow gravity. We show that local free-fall temperature in rainbow gravity, which depends on different energy [Formula: see text] of a test particle, is finite at the event horizon for a freely falling observer, while local temperature is divergent at the event horizon for a fiducial observer. Moreover, these temperatures in rainbow gravity satisfy similar relations to those of the Schwarzschild black hole except the overall factor [Formula: see text], which plays a key role of rainbow functions in this embedding approach.


2009 ◽  
Vol 42 (5) ◽  
pp. 1287-1310 ◽  
Author(s):  
Juan Carlos Degollado ◽  
Darío Núñez ◽  
Carlos Palenzuela

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Yu-Peng Zhang ◽  
Shao-Wen Wei ◽  
Pau Amaro-Seoane ◽  
Jie Yang ◽  
Yu-Xiao Liu

Abstract The future space-borne detectors will provide the possibility to detect gravitational waves emitted from extreme mass ratio inspirals of stellar-mass compact objects into supermassive black holes. It is natural to expect that the spin of the compact object and cosmological constant will affect the orbit of the inspiral process and hence lead to the considerable phase shift of the corresponding gravitational waves. In this paper, we investigate the motion of a spinning test particle in the spinning black hole background with a cosmological constant and give the order of motion deviation induced by the particle’s spin and the cosmological constant by considering the corresponding innermost stable circular orbit. By taking the neutron star or kerr black hole as the small body, the deviations of the innermost stable circular orbit parameters induced by the particle’s spin and cosmological constant are given. Our results show that the deviation induced by particle’s spin is much larger than that induced by cosmological constant when the test particle locates not very far away from the black hole, the accumulation of phase shift during the inspiral from the cosmological constant can be ignored when compared to the one induced by the particle’s spin. However when the test particle locates very far away from the black hole, the impact from the cosmological constant will increase dramatically. Therefore the accumulation of phase shift for the whole process of inspiral induced by the cosmological constant and the particle’s spin should be handled with caution.


Sign in / Sign up

Export Citation Format

Share Document