Field Theory in a Strong Magnetic Field and the Quantum Hall Effect

1992 ◽  
Vol 107 ◽  
pp. 167-183 ◽  
Author(s):  
Kenzo Ishikawa
1990 ◽  
Vol 42 (16) ◽  
pp. 10610-10640 ◽  
Author(s):  
N. Imai ◽  
K. Ishikawa ◽  
T. Matsuyama ◽  
I. Tanaka

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kyung-Su Kim ◽  
Steven A. Kivelson

AbstractIt is widely held that disorder is essential to the existence of a finite interval of magnetic field in which the Hall conductance is quantized, i.e., for the existence of “plateaus” in the quantum Hall effect. Here, we show that the existence of a quasi-particle Wigner crystal (QPWC) results in the persistence of plateaus of finite extent even in the limit of vanishing disorder. Several experimentally detectable features that characterize the behavior in the zero disorder limit are also explored.


1992 ◽  
Vol 06 (19) ◽  
pp. 3235-3247
Author(s):  
GREG NAGAO

An effective Hamiltonian for the study of the quantum Hall effect is proposed. This Hamiltonian, which includes a "current-current" interaction has the form of a Hamiltonian for a conformal field theory in the large N limit. An order parameter is constructed from which the Hamiltonian may be derived. This order parameter may be viewed as either a collective coordinate for a system of N charged particles in a strong magnetic field; or as a field of spins associated with the cyclotron motion of these particles.


2008 ◽  
Vol 22 (17) ◽  
pp. 2675-2689 ◽  
Author(s):  
PAUL BRACKEN

The chiral anomaly in (2+1)-dimensions and its relationship to the zero mode of the Dirac equation in the massless case is studied. Solutions are obtained for the Dirac equation under a vector potential which generates a constant magnetic field. It is shown that there is an anomaly term associated with the corresponding chiral transformation. It can be calculated by using the regularization procedure of Fujikawa. The results are applied to the quantum Hall effect.


Sign in / Sign up

Export Citation Format

Share Document