Overview of surficial geochemistry and indicator mineral surveys and case studies from the Geological Survey of Canada's GEM Program

2021 ◽  
pp. geochem2021-070
Author(s):  
M.B. McClenaghan ◽  
W.A. Spirito ◽  
S.J.A. Day ◽  
M.W. McCurdy ◽  
R.J. McNeil ◽  
...  

The Geological Survey of Canada carried out reconnaissance-scale to deposit-scale geochemical and indicator-mineral surveys and case studies across northern Canada between 2008 and 2020 as part of its Geo-mapping for Energy and Minerals (GEM) program. In these studies, surficial geochemistry was used to determine the concentrations of up to 65 elements in various sample media including lake sediment, lake water, stream sediment, stream water, or till samples across approximately 1 000 000 km2 of northern Canada. As part of these surficial geochemistry surveys, indicator mineral methods were also used in regional-scale and deposit-scale stream sediment and till surveys. Through this program, areas with anomalous concentrations of elements and/or indicator minerals that are indicative of bedrock mineralization were identified, new mineral exploration models and protocols were developed, a new generation of geoscientists was trained, and geoscience knowledge was transferred to northern communities. Regional- and deposit-scale studies demonstrated how transport data (till geochemistry, indicator mineral abundance) and ice-flow indicator data can be used together to identify and understand complex ice flow and glacial transport. Detailed studies at the Izok Lake Zn-Cu-Pb-Ag VMS, Nunavut, the Pine Point carbonate-hosted Pb-Zn in the Northwest Territories, the Strange Lake REE deposit in Quebec and Labrador as well as U-Cu-Fe-F and Cu-Ag-Au-Au IOCG deposits in the Great Bear magmatic zone, Northwest Territories demonstrate new suites of indicator minerals that can now be used in future reconnaissance- and regional-scale stream sediment and till surveys across Canada.

2021 ◽  
Author(s):  
I R Smith ◽  
S J A Day ◽  
R C Paulen ◽  
D G Pearson

Till (n=196) and stream sediment (n=60) samples were collected in the area south and west of Great Slave Lake, Northwest Territories (NTS 85B, C, F, and G), over the course of 3 summer field seasons. Samples were processed to recover kimberlite and other indicator minerals. This report summarizes results of the kimberlite indicator mineral (KIM) studies, including measures of KIM mineral types, abundances, and chemistry (major, trace, and rare earth elements). KIMs were present in 24% of the samples collected, and only 183 KIM grains in total were recovered, of which Cr-pyrope garnets were the most abundant (65.6%). Chemical analyses revealed strong similarities to the Drybones Bay and Mud Lake kimberlites which are situated 50 to >100 km to the northeast, roughly aligned with prominent glacially streamlined landform flowsets in this field area. Results suggest there is little evidence for undetected kimberlite outcrop or sub-crop in the study area.


Polar Record ◽  
1973 ◽  
Vol 16 (103) ◽  
pp. 559-577
Author(s):  
Alan Cooke ◽  
Clive Holland

During this short period began what may be termed the re-exploration of northern Canada, a scientific examination of lands that had been roughly charted by expeditions of the previous hundred years, but that were otherwise little known except to fur traders, a few missionaries, and the occasional traveller. Only now did the newly confederated Dominion of Canada begin to take a practical interest in its vast northern expansions. The government sent three scientific expeditions to Hudson Strait and Hudson Bay, and the Geological Survey of Canada began to direct its attention towards the north. One of its officers, A. P. Low, explored the length and breadth of the Quebec-Labrador peninsula virtually single-handed and, as if anticipating the Klondike gold rush, towards which the work of many prospectors in Yukon Territory was steadily leading, Dawson, McConnell and Ogilvie published detailed accounts of routes and conditions in the Northwest Territories and Yukon Territory, information that proved invaluable to both government and individuals when the rush was on.


2007 ◽  
Vol 44 (8) ◽  
pp. 1169-1202 ◽  
Author(s):  
Richard D Dyer ◽  
Peter J Barnett

The Surficial Geochemistry Case Studies Project in the Lake Nipigon region involved detailed Quaternary mapping and multimedia geochemical sampling within five case study areas. Two of these areas, Lac des Iles and Tib Lake, contain known platinum group element (PGE) mineralization. The other three case study areas feature drainage catchments with lakes that contain anomalous levels of PGEs in bottom sediment. Surficial media sampled included till, soils, stream sediment, lake sediment, peat, surface water, and groundwater. Over Archean terrain, such as at Lac des Iles and Tib Lake, there is excellent geochemical contrast between the PGE prospective rock type (mafic to ultramafic intrusive) and the surrounding rock type (e.g., granitoid rocks). This geochemical contrast is mirrored in the geochemistry of most surficial media sampled during this project. Over the Nipigon Embayment, the geochemical contrast between mafic and ultramafic rocks (e.g., “Seagull”-type intrusions) and the surrounding diabase sill rocks is inherently weaker due to the relatively high background levels for copper, palladium, and gold in the Nipigon diabase sills. However, the results of stream-water geochemistry over the Seagull and Disraeli ultramafic intrusions highlight their unique geochemical footprint on the surficial landscape, in particular with respect to Cr, Mg, and Ni, compared with the surrounding Nipigon diabase. In addition, lake sediments underlain by the Seagull, Disraeli, and Hele intrusions have distinctly elevated Cr concentrations and Gd/Yb ratios compared with the surrounding areas underlain by Nipigon diabase sills or Sibley Group rocks. Therefore, exploration value can be maximized over the Nipigon Embayment by exploiting these geochemical contrasts in surficial media to discriminate between ultramafic rocks and the surrounding Nipigon diabase sills. The results of this study highlight the importance of chromium concentrations in surficial media as a diagnostic feature for the presence of ultramafic rocks, regardless of their age or location. In general, a cost-effective exploration strategy for PGE mineralization includes targeting the associated metals (Cr, Ni) within drift deposits (C-horizon till) and drainage media (stream sediment, lake sediment) to vector to prospective mafic–ultramafic intrusive rocks, prior to detailed (property scale) follow-up, involving the determination of base metals and PGEs within soil, till, stream sediment, and peat samples. Relative to the metals copper, nickel, and chromium (ppm levels), the PGEs have significantly lower initial concentrations (ppb levels), are less mobile in the surficial environment, have significantly shorter glacial dispersion trains, and are less reliably determined at the laboratory.


Sign in / Sign up

Export Citation Format

Share Document