Old challenges, new developments and new plays in Irish offshore exploration

2016 ◽  
Vol 8 (1) ◽  
pp. 171-185 ◽  
Author(s):  
Patrick M. Shannon

AbstractMore than 46 years of exploration in the Irish offshore has yielded modest commercial success. However, working petroleum systems have been proven in all the offshore basins. The pace of exploration has been controlled by: (a) data quality and technological advances; (b) geological understanding and plays; (c) fiscal and infrastructural environments; and (d) international conditions. Irish offshore exploration drilling started in the Celtic Sea basins in 1970 and the region has seen a recent renewal of exploration interest, stimulated by new and much improved seismic data. In the Atlantic margin basins west of Ireland, there has been a recent significant improvement in the understanding of the geological evolution and petroleum systems, especially in the hyperextended basins such as the Porcupine and Rockall basins. Here the major targets of current exploration are stratigraphic traps at Lower Cretaceous and Lower Cenozoic levels. The application of new and innovative seismic and other geophysical technologies in a number of the Irish offshore basins has led to significant enhancement in data quality and in resolving imaging challenges. Combined with recent geological learnings, they offer renewed hope for exploration success in the Irish offshore basins.

1975 ◽  
Vol 15 (1) ◽  
pp. 33 ◽  
Author(s):  
M. G. Boeuf ◽  
H. Doust

Off the southern coast of Australia, exploration results and deep-water reconnaissance seismic data support the concept of an aseismic Atlantic-type continental margin. Characteristic is a sedimentary wedge which extends from the shelf to the abyssal plains and includes crustal elements of continental and oceanic origin.Oceanward, a continuous level of diffractions ascribed to the top of oceanic crust can be observed on seismic records, steeply dipping beneath the continental rise towards a smooth, flat, often faulted reflector which is correlated with top Precambrian or Palaeozoic continental basement.The sedimentary wedge which overlies the block-faulted and collapsed continental basement is subdivided by unconformities into: (a) a continental Lower Cretaceous unit and a fluviodeltaic unit of Upper Cretaceous-Danian age which are taken to represent rift valley stages of deposition controlled by extensional tectonics and (b) a post-breakup sequence of Tertiary units representing regional collapse and out-building of the shelf. The Upper Cretaceous sequence is missing along much of the continental edge where Tertiary sediments appear to rest directly on the Lower Cretaceous unit.Our interpretation suggests that a prolonged period of uplift took place along the axis of the rift valley prior to continental break-up. On the basis of palaeomagnetic data and biostratigraphic analysis the breakup phase started in the Upper Paleocene.From the continent outward several structural zones can commonly be recognised: (a) a zone of shallow basement with a thin Lower Cretaceous cover normally faulted and overlain by thin gently dipping Tertiary beds, (b) a zone of faulted and landwards tilted basement blocks and Lower Cretaceous sediments overlain (sometimes with clear unconformity) by thick Upper Cretaceous sediments, (c) a zone of thick, moderately deformed Tertiary sediments whose axis of deposition is generally offset to the south of the Upper Cretaceous basinal axis, (d) a zone of rotational faults and associated toe thrusts affecting the Cretaceous sediments and apparently related to the time of margin collapse, (e) an area of little disturbed Cretaceous and Tertiary sediments overlying continental basement. This zone extends into the "magnetic quiet zone" which is therefore believed to be, at least in part, a collapsed portion of the continental margin adjacent to oceanic crust.The interpretation of the geological evolution of the southern Australian margin based on the stratigraphic and structural data presently available can be related to current theoretical models on continental margin development.


Author(s):  
A. Livsey

South Sumatra is considered a mature exploration area, with over 2500MMbbls of oil and 9.5TCF of gas produced. However a recent large gas discovery in the Kali Berau Dalam-2 well in this basin, highlights that significant new reserve additions can still be made in these areas by the re-evaluation of the regional petroleum systems, both by identification of new plays or extension of plays to unexplored areas. In many mature areas the exploration and concession award history often results in successively more focused exploration programmes in smaller areas. This can lead to an increased emphasis on reservoir and trap delineation without further evaluation of the regional petroleum systems and, in particular, the hydrocarbon charge component. The Tungkal PSC area is a good example of an area that has undergone a long exploration history involving numerous operators with successive focus on block scale petroleum geology at the expense of the more regional controls on hydrocarbon prospectivity. An improved understanding of hydrocarbon accumulation in the Tungkal PSC required both using regional petroleum systems analysis and hydrocarbon charge modelling. While the Tungkal PSC operators had acquired high quality seismic data and drilled a number of wells, these were mainly focused on improving production from the existing field (Mengoepeh). More recent exploration-driven work highlighted the need for a new look at the hydrocarbon charge history but it was clear that little work had been done in the past few year to better understand exploration risk. This paper summarises the methodology employed and the results obtained, from a study, carried out in 2014-15, to better understand hydrocarbon accumulation within the current Tungkal PSC area. It has involved integration of available well and seismic data from the current and historical PSC area with published regional paleogeographic models, regional surface geology and structure maps, together with a regional oil generation model. This approach has allowed a better understanding of the genesis of the discovered hydrocarbons and identification of areas for future exploration interest.


2021 ◽  
Author(s):  
Anthony Aming

Abstract See how application of a fully trained Artificial Intelligence (AI) / Machine Learning (ML) technology applied to 3D seismic data volumes delivers an unbiased data driven assessment of entire volumes or corporate seismic data libraries quickly. Whether the analysis is undertaken using onsite hardware or a cloud based mega cluster, this automated approach provides unparalleled insights for the interpretation and prospectivity analysis of any dataset. The Artificial Intelligence (AI) / Machine Learning (ML) technology uses unsupervised genetics algorithms to create families of waveforms, called GeoPopulations, that are used to derive Amplitude, Structure (time or depth depending on the input 3D seismic volume) and the new seismic Fitness attribute. We will show how Fitness is used to interpret paleo geomorphology and facies maps for every peak, trough and zero crossing of the 3D seismic volume. Using the Structure, Amplitude and Fitness attribute maps created for every peak, trough and zero crossing the Exploration and Production (E&P) team can evaluate and mitigate Geological and Geophysical (G&G) risks and uncertainty associated with their petroleum systems quickly using the entire 3D seismic data volume.


2013 ◽  
Vol 50 (6) ◽  
pp. 607-635 ◽  
Author(s):  
Yawooz A. Kettanah

Fluid inclusions hosted in rock salt from the Triassic Argo Formation in the Canadian Atlantic continental margin were studied to investigate the nature and origin of petroleum fluids in them. Inclusions were studied in two wells: Glooscap-C63 and Weymouth-A45. The pillow-shaped salt body intersected by the Glooscap-C63 well is autochthonous, and the salt is transparent and colorless compared with that in the allochthonous, canopy–diaper-shaped body cut by the Weymouth-A45 well which is translucent and buff-colored. Aqueous (AFI), petroleum (PFI), and heterogeneously trapped, mixed petroleum – aqueous (MFI) fluid inclusions were identified using transmitted and fluorescent microscopy, and representative samples were analyzed microthermometrically. Petroleum-bearing fluid inclusions (PFI and MFI) are more common and contain more concentrated petroleum phases in the allochthonous salts of Weymouth-A45 well. Based on microthermometric studies, the AFI and MFI in Glooscap-C63 salt mostly belong to NaCl–H2O and NaCl–H2O–petroleum systems, respectively; in contrast, those of Weymouth-A45 belong to NaCl–MgCl2–H2O and (or) NaCl–CaCl2–H2O and NaCl–MgCl2–H2O–petroleum and (or) NaCl–CaCl2–H2O–petroleum systems, respectively. Each of the AFI, PFI, and MFI types consists of different phases. The medians of Tf (freezing temperature), Tim (initial melting temperature), Te (Eutectic temperature), Tm (final melting (peritectic) temperature), and Th (homogenization temperature) in the AFI and MFI in the salts of Glooscap-C63 well are (−82, −75 °C), (−39, −38 °C), (−25, −24 °C), (−1.8, −3 °C), and (291, 287 °C), respectively. The corresponding medians for the Weymouth-A45 well are (−71, −78 °C), (−52, −52 °C), (−37, −38 °C), (−2.7, −3 °C), and (122, 20 °C), respectively. The median Th of PFI in Glooscap-C63 and Weymouth-A45 salts are 79 and 23 °C, respectively. The most probable source rocks for the petroleum are the shales of the Late Triassic – Early Jurassic Eurydice Formation which is widely distributed at depth underlying the Argo salt.


2021 ◽  
pp. 36-50
Author(s):  
O. V. Elisheva ◽  
K. A. Sosnovskikh

In order to improve the efficiency of exploration drilling at various greenfield license areas owned by Rosneft Oil Company, Tyumen Petroleum Scientific Center LLC has been actively developing and implementing various innovative technologies in recent years that allow increasing the probability of discovering new hydrocarbon deposits. One of such approaches is the use of different methods based on the principles of fractality of geological objects. The article presents the results of using the fractal analysis method to solve one of the applied problems of oil and gas geology, namely, the correction of the boundaries of facies zones on facies maps, which are the basis for constructing risk maps for the "reservoir". It is shown that the boundaries of the facies zones on facies maps, built mainly on seismic data and a limited amount of materials from exploration drilling, have a large variability. The found statistical relationship between the distribution of the total reservoir thicknesses in different facies zones and the fractal dimension of the traps made it possible to correct facies and risk maps.


First Break ◽  
2022 ◽  
Vol 40 (1) ◽  
pp. 81-86
Author(s):  
Nicolas Tellier ◽  
Gilles Ollivrin ◽  
Stéphane Laroche ◽  
Christophe Donval
Keyword(s):  

2021 ◽  
Author(s):  
Ivan Karpenko ◽  
Ihor Ischenko ◽  
Olha Nikolenko ◽  
Felipe Rodrigues ◽  
Serhii Levonyuk ◽  
...  

Abstract The Ukrainian sector of the Western Black Sea (WBS) is one of the last remaining exploration frontiers in Europe. This area, which includes shelf to deepwater environments, is underexplored with no drilling of targets in water depths exceeding 100 meters. That is why, the Ukrainian sector of the WBS is attractive for exploration, especially in the context of new play types and targets such as biogenic gas. These hydrocarbon formations have been proven by neighboring Romania and Turkey in the areas adjacent to Ukrainian waters. Therefore, a rigorous Basin Analysis program has been initiated to assess the petroleum systems and play risks in the entire Ukrainian sector of the WBS. The goals of this program are: 1) to establish a regional geoscience foundation following best industrial practices in exploration; 2) to enable establishing more accurate risking and ranking procedures for an exploration portfolio and 3) to provide critical support for the analysis of a new generation of seismic data that is currently being acquired. In this paper the initial scope of work is presented.


Sign in / Sign up

Export Citation Format

Share Document