Hydrocarbon fluid inclusions in the Argo salt, offshore Canadian Atlantic margin

2013 ◽  
Vol 50 (6) ◽  
pp. 607-635 ◽  
Author(s):  
Yawooz A. Kettanah

Fluid inclusions hosted in rock salt from the Triassic Argo Formation in the Canadian Atlantic continental margin were studied to investigate the nature and origin of petroleum fluids in them. Inclusions were studied in two wells: Glooscap-C63 and Weymouth-A45. The pillow-shaped salt body intersected by the Glooscap-C63 well is autochthonous, and the salt is transparent and colorless compared with that in the allochthonous, canopy–diaper-shaped body cut by the Weymouth-A45 well which is translucent and buff-colored. Aqueous (AFI), petroleum (PFI), and heterogeneously trapped, mixed petroleum – aqueous (MFI) fluid inclusions were identified using transmitted and fluorescent microscopy, and representative samples were analyzed microthermometrically. Petroleum-bearing fluid inclusions (PFI and MFI) are more common and contain more concentrated petroleum phases in the allochthonous salts of Weymouth-A45 well. Based on microthermometric studies, the AFI and MFI in Glooscap-C63 salt mostly belong to NaCl–H2O and NaCl–H2O–petroleum systems, respectively; in contrast, those of Weymouth-A45 belong to NaCl–MgCl2–H2O and (or) NaCl–CaCl2–H2O and NaCl–MgCl2–H2O–petroleum and (or) NaCl–CaCl2–H2O–petroleum systems, respectively. Each of the AFI, PFI, and MFI types consists of different phases. The medians of Tf (freezing temperature), Tim (initial melting temperature), Te (Eutectic temperature), Tm (final melting (peritectic) temperature), and Th (homogenization temperature) in the AFI and MFI in the salts of Glooscap-C63 well are (−82, −75 °C), (−39, −38 °C), (−25, −24 °C), (−1.8, −3 °C), and (291, 287 °C), respectively. The corresponding medians for the Weymouth-A45 well are (−71, −78 °C), (−52, −52 °C), (−37, −38 °C), (−2.7, −3 °C), and (122, 20 °C), respectively. The median Th of PFI in Glooscap-C63 and Weymouth-A45 salts are 79 and 23 °C, respectively. The most probable source rocks for the petroleum are the shales of the Late Triassic – Early Jurassic Eurydice Formation which is widely distributed at depth underlying the Argo salt.

2000 ◽  
Vol 40 (1) ◽  
pp. 26
Author(s):  
M.R. Bendall C.F. Burrett ◽  
H.J. Askin

Sedimentary successions belonging to three petroleum su persy stems can be recognised in and below the Late Carboniferous to Late Triassic onshore Tasmania Basin. These are the Centralian, Larapintine and Gondwanan. The oldest (Centralian) is poorly known and contains possible mature source rocks in Upper Proterozoic dolomites. The Larapintine 2 system is represented by rocks of the Devonian fold and thrust belt beneath the Tasmania Basin. Potential source rocks are micrites and shales within the 1.8 km-thick tropical Ordovician Gordon Group carbonates. Conodont CAI plots show that the Gordon Group lies in the oil and gas windows over most of central Tasmania and probably under much of the Tasmania Basin. Potential reservoirs are the upper reefal parts of the Gordon Group, paleokarsted surfaces within the Gordon Group and the overlying sandstones of the Siluro-Devonian Tiger Range and Eldon Groups. Seal rocks include shales within the Siluro-Devonian and Upper Carboniferous-Permian tillites and shales.The Gondwanan supersystem is the most promising supersystem for petroleum exploration within the onshore Tasmania Basin. It is divided into two petroleum systems— the Early Permian Gondwanan 1 system, and the Late Permian to Triassic Gondwanan 2 system. Excellent source rocks occur in the marine Tasmanite Oil Shale and other sections within the Lower Permian Woody Island and Quamby Formations of the Gondwanan 1 system and within coals and freshwater oil shales of the Gondwanan 2 system. These sources are within the oil and gas windows across most of the basin and probably reached peak oil generation at about 100 Ma. An oil seep, sourced from a Tasmanites-rich, anoxic shale, is found within Jurassic dolerite 40 km WSW of Hobart. Potential Gondwanan 1 reservoirs are the glaciofluvial Faulkner Group sandstones and sandstones and limestones within the overlying parts of the glaciomarine Permian sequence. The Upper Permian Ferntree Mudstone Formation provides an effective regional seal. Potential Gondwanan 2 reservoirs are the sandstones of the Upper Permian to Norian Upper Parmeener Supergroup. Traps consisting of domes, anticlines and faults were formed probably during the Early Cretaceous. Preliminary interpretation of a short AGSO seismic profile in the Tasmania Basin shows that, contrary to earlier belief, structures can be mapped beneath extensive and thick (300 m) sills of Jurassic dolerite. In addition, the total section of Gondwana to Upper Proterozoic to Triassic sediments appears to be in excess of 8,500 m. These recent studies, analysis of the oil seep and drilling results show that the Tasmanian source rocks have generated both oil and gas. The Tasmania Basin is considered prospective for both petroleum and helium and is comparable in size and stratigraphy to other glaciomarine-terrestrial Gondwanan basins such as the South Oman and Cooper Basins.


2007 ◽  
Vol 47 (1) ◽  
pp. 127 ◽  
Author(s):  
G. Ambrose ◽  
M. Scardigno ◽  
A.J. Hill

Prospective Middle–Late Triassic and Early Jurassic petroleum systems are widespread in central Australia where they have only been sparsely explored. These systems are important targets in the Simpson/Eromanga basins (Poolowanna Trough and surrounds), but the petroleum systems also extend into the northern and eastern Cooper Basin.Regional deposition of Early–Middle Triassic red-beds, which provide regional seal to the Permian petroleum system, are variously named the Walkandi Formation in the Simpson Basin, and the Arrabury Formation in the northern and eastern Cooper Basin. A pervasive, transgressive lacustrine sequence (Middle–Late Triassic Peera Peera Formation) disconformably overlies the red-beds and can be correlated over a distance of 500 km from the Poolowanna Trough into western Queensland, thus providing the key to unravelling Triassic stratigraphic architecture in the region. The equivalent sequence in the northern Cooper Basin is the Tinchoo Formation. These correlations allow considerable simplification of Triassic stratigraphy in this region, and demonstrate the wide lateral extent of lacustrine source rocks that also provide regional seal. Sheet-like, fluvial-alluvial sands at the base of the Peera Peera/Tinchoo sequence are prime reservoir targets and have produced oil at James–1, with widespread hydrocarbon shows occurring elsewhere including Poolowanna–1, Colson–1, Walkandi–1, Potiron–1 and Mackillop–1.The Early Jurassic Poolowanna Formation disconformably overlies the Peera Peera Formation and can be subdivided into two transgressive, fluvial-lacustrine cycles, which formed on a regional scale in response to distal sea level oscillations. Early Jurassic stratigraphic architecture in the Poolowanna Trough is defined by a lacustrine shale capping the basal transgressive cycle (Cycle 1). This shale partitions the Early Jurassic aquifer in some areas and significant hydrocarbon shows and oil recoveries are largely restricted to sandstones below this seal. Structural closure into the depositional edge of Cycle 1 is an important oil play.The Poolowanna and Peera Peera formations, which have produced minor oil and gas/condensate on test respectively in Poolowanna–1, include lacustrine source rocks with distinct coal maceral compositions. Significantly, the oil-bearing Early Jurassic sequence in Cuttapirrie–1 in the Cooper Basin correlates directly with the Cycle–1 oil pool in Poolowanna–1. Basin modelling in the latter indicates hydrocarbon expulsion occurred in the late Cretaceous (90–100 Ma) with migration into a subtle Jurassic age closure. Robust Miocene structural reactivation breached the trap leaving only minor remnants of water-washed oil. Other large Miocene structures, bound by reverse faults and some reflecting major inversion, have failed to encounter commercial hydrocarbons. Future exploration should target subtle Triassic to Jurassic–Early Cretaceous age structural and combination stratigraphic traps largely free of younger fault dislocation.


2017 ◽  
Vol 57 (2) ◽  
pp. 744
Author(s):  
Jarrad Grahame ◽  
Emma Cairns ◽  
Stephanie Roy

CGG Multi-Client & New Ventures, in collaboration with CGG Robertson, has undertaken a new comprehensive study of the Triassic paleogeography and petroleum systems of the North West Shelf (NWS) including the Northern Carnarvon, Roebuck, Browse and Bonaparte basins. The key objectives of the study were to enhance the understanding of the prospectivity of NWS Triassic petroleum systems, develop new paleogeography maps, establish evidence for Triassic marine-derived source rocks and investigate the prospectivity of Late Triassic carbonate reef complexes. The study comprises new biostratigraphic analyses, quantitative evaluation by scanning electron microscopy (QEMSCAN®) analyses, core logging, 1D and 2D modelling of key wells and seismic sections, plate reconstructed paleogeography and play mapping. Of key relevance to this study is the paleo-depositional framework and subsequent structuring of Triassic successions throughout the NWS basins in the context of petroleum system development.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ruijing Zhu ◽  
Rongxi Li ◽  
Xiaoli Wu ◽  
Xiaoli Qin ◽  
Bangsheng Zhao ◽  
...  

The Permian tight clastic reservoir and Ordovician carbonate reservoir were developed in the central-southern Ordos Basin. This study investigated the fluid inclusion petrography, diagenetic fluid characteristics, formation process of natural gas reservoir, source rock characteristics, and reservoir accumulation characteristics of these Paleozoic strata by petrographic observations, scanning electron microscope imaging, fluid inclusion homogenization temperature, salinity, laser Raman spectrum, and gas chromatograph analyses. The results have suggested two phases of fluid inclusions in both the Permian sandstone and the Ordovician Majiagou Formation dolomite reservoirs, and the fluid inclusions recorded the history from the early thermal evolution of hydrocarbon generation to the formation, migration, and accumulation of natural gas. The early-phase inclusions show weak yellow fluorescence and recorded the early formation of liquid hydrocarbons, while the late-phase inclusions are nonfluorescent natural gas inclusions distributed in the late tectonic fractures and recorded the late accumulation of natural gas. The brine systems of the Permian and Ordovician fluid inclusions are, respectively, dominated by CaCl2-H2O and MgCl2-NaCl-H2O. The diagenetic fluids were in the ranges of medium-low temperature and moderate-low salinity. The natural gas hydrocarbon source rocks in the Ordos Basin include both the Permian coal-bearing rocks and the Ordovician carbonates. The process of the early-phase liquid hydrocarbon formation and migration into the reservoir corresponded to 220 Ma (Late Triassic). The late large-scale migration and accumulation of natural gas occurred at 100 Ma (early Late Cretaceous), which was close to the inclusion Rb/Sr isochron age of 89.18 Ma, indicating that the natural gas accumulation was related to the Yanshanian tectonic movement.


2020 ◽  
Vol 38 (4) ◽  
pp. 989-1013 ◽  
Author(s):  
Anmin Wang ◽  
Jing Li ◽  
Yingchun Wei ◽  
Chengwei Yang ◽  
Jing Nie ◽  
...  

The Juhugeng mining area in the Qilian Mountains is the only district of China where terrestrial gas hydrate has been found. This paper aimed at studying the gas migration for gas hydrates based on fluid inclusion and apatite fission track experiments with samples being collected in both the hanging wall (Triassic strata, non-hydrocarbon source rocks) and footwall (Jurassic strata, hydrocarbon source rocks) of drilling cores. Fluid inclusions are found in both the hanging wall and footwall, and are characterized by two generations: the first generation includes gaseous and liquid hydrocarbon fluid inclusions with the homogenization temperature of concomitant saline water inclusions being 83–115°C, and the second generation includes gaseous fluid inclusions with the concomitant homogenization temperature of saline water inclusions being 115–149 °C, suggesting two periods of gas migration. Combining with the reconstruction of the burial and thermal histories, the gas migration history can be elaborated as follows: (1) In the Late Paleogene period (>30 Ma), the gas in the footwall migrated to the hanging wall because of the thrusting of Triassic strata, with the temperature being more than 110 ± 10°C (derived from apatite fission track results), corresponding well with the homogenization temperature of the saline water inclusions of the first generation being 115–149 °C; (2) In the Late Neogene to Quaternary (<8 Ma), the study area were impacted by the intensive faults, leading to the second gas migration with a good match between temperature lower than 110 ± 10°C (derived from apatite fission track results) and the homogenization temperature of saline water inclusions in the second generation (83–115 °C), and the geological age of the second gas migration can be restricted from 8 to 1.8 Ma. The permafrost was formed in Quaternary, so the controversial gas hydrate formation pattern can be determined that the gas should be accumulated before the permafrost was formed.


2020 ◽  
pp. 014459872097451
Author(s):  
Wenqi Jiang ◽  
Yunlong Zhang ◽  
Li Jiang

A fluid inclusion petrographic and microthermometric study was performed on the sandstones gathered from the Yanchang Formation, Jiyuan area of the Ordos Basin. Four types of fluid inclusions in quartz can be recognized based on the location they entrapped. The petrographic characteristics indicate that fluid inclusions in quartz overgrowth and quartz fissuring-I were trapped earlier than that in quartz fissuring-IIa and fissuring-IIb. The homogenization temperature values of the earlier fluid inclusions aggregate around 80 to 90°C; exclusively, it is slightly higher in Chang 6 member, which approaches 95°C. The later fluid inclusions demonstrate high homogenization temperatures, which range from 100 to 115°C, and the temperatures are slightly higher in Chang 9 member. The calculated salinities show differences between each member, including their regression characteristics with burial depth. Combining with the vitrinite reflection data, the sequence and parameters of fluid inclusions indicate that the thermal history of the Yanchang formation mostly relied on burial. Salinity changes were associated with fluid-rock interaction or fluid interruption. Hydrocarbon contained fluid inclusions imply that hydrocarbon generation and migration occurred in the Early Cretaceous. The occurrence of late fluid inclusions implied that quartz cement is a reservoir porosity-loose factor.


2021 ◽  
Vol 44 (3) ◽  
pp. 349-384 ◽  
Author(s):  
V. Aghayeva ◽  
R. F. Sachsenhofer ◽  
C.G.C. van Baak ◽  
A. Bechtel ◽  
T. M. Hoyle ◽  
...  

2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Oktay Canbaz ◽  
Ahmet Gökce

AbstractThe Çöpler gold deposit occurs within the stockwork of quartz hosted by the Çöpler granitoid (Eosen) and by surrounding metasediments of Keban metamorphic (Late Paleozoic - Early Mesozoic) and the Munzur limestones (Late Carboniferous - Early Cretaceous).Native gold accompanied by small amounts of chalcopyrite, pyrite, magnetite, maghemite, hematite, fahlerz, marcasite, bornite, galena, sphalerite, specular hematite, goethite, lepidochrosite and bravoitic pyrite within the stockwork ore veinlets. In addition, epidote (pistazite - zoisite), garnet, scapolite, chlorite, tremolite/actinolite, muscovite and opaque minerals were determined within the veinlets occurred in skarn zones.The study of fluid inclusions in quartz veinlets showed that the hydrothermal fluids contain CaCl2, MgCl2 and NaCl and the salinities of the two phases (L+V) inclusions range from 1.7 to 20.6% NaCl equivalent. Salinity values up to 44% were determined within the halite bearing three phases inclusions. Their homogenization temperature values have a wide range from 145.0 to 380.0°C, indicative of catathermal/hypothermal to epithermal conditions. The δ 18O and δD values of the fluid inclusion waters from the Çöpler granitoid correspond to those assigned to Primary Magmatic Water, those from the metasediments of Keban metamorphics fall outside of the Primary Magmatic and are within the Metamorphic Water field. A sample from a quartz vein within the skarn zone hosted by the Munzur limestones has a particularly low δD value.The results suggest that fluids derived from the granitoids were mixed with those derived from the metasediments of Keban metamorphics and the the Munzur limestones and resulting in quartz veinlets in these lithologies and the formation of stockwork ores. In view of the occurrence, the features described and processes envisaged for this study area may be applicable in similar settings.


1995 ◽  
Vol 13 (2-3) ◽  
pp. 245-252
Author(s):  
J M Beggs

New Zealand's scientific institutions have been restructured so as to be more responsive to the needs of the economy. Exploration for and development of oil and gas resources depend heavily on the geological sciences. In New Zealand, these activities are favoured by a comprehensive, open-file database of the results of previous work, and by a historically publicly funded, in-depth knowledge base of the extensive sedimentary basins. This expertise is now only partially funded by government research contracts, and increasingly undertakes contract work in a range of scientific services to the upstream petroleum sector, both in New Zealand and overseas. By aligning government-funded research programmes with the industry's knowledge needs, there is maximum advantage in improving the understanding of the occurrence of oil and gas resources. A Crown Research Institute can serve as an interface between advances in fundamental geological sciences, and the practical needs of the industry. Current publicly funded programmes of the Institute of Geological and Nuclear Sciences include a series of regional basin studies, nearing completion; and multi-disciplinary team studies related to the various elements of the petroleum systems of New Zealand: source rocks and their maturation, migration and entrapment as a function of basin structure and tectonics, and the distribution and configuration of reservoir systems.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-25
Author(s):  
Lu Zhang ◽  
Shao-Yong Jiang ◽  
Suo-Fei Xiong ◽  
Deng-Fei Duan

The Fuzishan Cu-Mo deposit is located in the Edong district of the Middle-Lower Yangtze River Metallogenic Belt, China. The orebodies mainly occurred as lenticular and bedded shapes in the skarn zone between the Lower Permian Qixia Formation carbonate rocks and the quartz diorite. Four paragenetic stages have been recognized based on petrographic observations: (1) prograde skarn stage, (2) retrograde skarn stage, (3) quartz-sulfide stage, and (4) carbonate stage. Six fluid inclusion types were recognized: S1(vapor + liquid + halite ± other daughter minerals), S2(vapor + liquid + daughter minerals except halite), LV(rich liquid + vapor), VL(rich vapor + liquid), V (vapor), and L (liquid) types. Fluid inclusion studies show distinct variations in composition, final homogenization temperature, and salinity in four stages. Daughter minerals of the primary fluid inclusions include chalcopyrite, molybdenite, hematite, anhydrite, calcite, and halite in the prograde skarn stage and hematite, calcite, and sulfide (?) in the retrograde skarn stage. No daughter minerals occurred in the quartz-sulfide and carbonate stages. Final homogenization temperatures recorded in these stages are from 405 to >550°C, from 212 to 498°C, from 150 to 485°C, and from 89 to 223°C, respectively, while salinities are from 3.7 to 42.5, from 2.6 to 18.5, from 2.2 to 17.9, and from 0.2 to 11.5 wt.% NaCl equivalent, respectively. The coexisting VLand S1type fluid inclusions show similar homogenization temperature of 550 to about 650°C in the prograde skarn stage, indicating that immiscibility occurred at lithostatic pressure of 700 bars to perhaps 1000 bars, corresponding to a depth of 2.6 km to about 3.7 km. The coeval VLand LVtypes fluid inclusions with homogenization temperature of 350 to 400°C in the late retrograde skarn and quartz-sulfide stages suggest that boiling occurred under hydrostatic pressure of 150 to 280 bars, equivalent to a depth of 1.5 to 2.8 km. Mo mineralization in the retrograde stage predated Cu mineralization which mainly occurred in the quartz-sulfide stage. Fluid compositions indicate that ore-forming fluid has highfO2and rich Cu and Mo concentration in the early stage, while relatively lowerfO2and poor Cu and Mo concentration in the middle to late stages. Microthermometric data show a decreasing trend in temperature and salinity in the fluid evolution process. Decreasing temperature and boiling event may be the main factors that control the ore precipitation.


Sign in / Sign up

Export Citation Format

Share Document